Published online by Cambridge University Press: 31 August 2018
We show that for the attractor (K1, . . ., Kq) of a graph directed iterated function system, for each 1 ⩽ j ⩽ q and ϵ > 0 there exists a self-similar set K ⊆ Kj that satisfies the strong separation condition and dimHKj − ϵ < dimHK. We show that we can further assume convenient conditions on the orthogonal parts and similarity ratios of the defining similarities of K. Using this property as a ‘black box’ we obtain results on a range of topics including on dimensions of projections, intersections, distance sets and sums and products of sets.