No CrossRef data available.
Published online by Cambridge University Press: 06 December 2024
In this paper, we give an explicit formula as well as a practical algorithm for computing the Cassels–Tate pairing on $\text{Sel}^{2}(J) \times \text{Sel}^{2}(J)$ where J is the Jacobian variety of a genus two curve under the assumption that all points in J[2] are K-rational. We also give an explicit formula for the Obstruction map
$\text{Ob}: H^1(G_K, J[2]) \rightarrow \text{Br}(K)$ under the same assumption. Finally, we include a worked example demonstrating that we can improve the rank bound given by a 2-descent via computing the Cassels–Tate pairing.