Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:11:32.307Z Has data issue: false hasContentIssue false

Complex Einstein hypersurfaces of indefinite complex space forms

Published online by Cambridge University Press:  24 October 2008

S. Montiel
Affiliation:
Departamento de Geometria y Topologia, Universidad de Granada, Spain
A. Romero
Affiliation:
Departamento de Geometria y Topologia, Universidad de Granada, Spain

Extract

In [8], Fialkow classified Einstein hypersurfaces in indefinite space forms, when the Weingarten endomorphism is diagonalizable. Recently, [13]–[15], Magid completed this work when such endomorphism is not diagonalizable. On the other hand, Smyth [17], classified complex Einstein hypersurfaces in complex space forms. Since Barros & Romero, [1], have made a systematic study of indefinite Kāhlerian manifolds, in particular, indefinite complex space forms, we investigate here complex Einstein non-degenerate hypersurfaces in indefinite complex space forms. In our case, we cannot always diagonalize the Weingarten endomorphism Aassociated to a unit normal field because it is a self-adjoint endomorphism in an indefinite metric vector space, but we prove that, if A is not diagonalizable, one has either A2 = 0 and A ≠ 0 or A2 = −γ2I, γε. We obtain in Theorems 4.4 and 5.5 a full classification except in the case that the ambient space is flat and the Weingarten endomorphism A satisfies A2 = 0and A ≠0. Our classification is based on extending Smyth's results to show that, except in this last case, an Einstein hypersurface is locally symmetric. Using expressions for the curvature tensor to estimate the dimension of the isotropy group, together with Berger's list of symmetric spaces, [3], we then determine the possible Einstein hypersurfaces.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barros, M. and Romero, A.. Indefinite Kāhlerian manifolds. Math. Ann. 261 (1982), 5562.CrossRefGoogle Scholar
[2] Barros, M., Montiel, S. and Romero, A.. The topology of indefinite flag manifolds. Ann. di. Mat. Pura ed Appt. (to appear).Google Scholar
[3] Berger, M.. Les espaces symétriques non compacts. Ann. Ecole. Norm. 12 (1957), 85177.Google Scholar
[4] Bishop, R. and Crittenden, R.. Geometry of Manifolds. (Academic Press, 1964).Google Scholar
[5] Cahen, M. and Parker, M.. Sur des classes d'espaces pseudo-riemanniens symétriques. Bull. Soc. Math. Bellt. Sér. A 12 (1970), 339354.Google Scholar
[6] Cahen, M. and Parker, M.. Pseudo-riemannien symmetric spaces. Memoirs of the A.M.S., no. 229 (1980).Google Scholar
[7] Chen, B. Y. and Ogiue, K.. Some extrinsic results for Kaehler submanifolds. Tamkang J. Math. 4 (1973), 207213.Google Scholar
[8] Fialkow, A.. Hypersurfaces of a space of constant curvature. Ann. of. Math. 39 (1938), 762785.CrossRefGoogle Scholar
[9] Helgason, S.. Differential Geometry and Symmetric Spaces. (Academic Press, 1962).Google Scholar
[10] Kobayashi, S. and Nomizu, K.. Automorphisms of a Kāhlerian structure. Nagoya Math. J. 11 (1957), 115124.CrossRefGoogle Scholar
[11] Kosayashi, S. and Nonuzu, K.. Foundations of Differential Geometry, vols. I, II. (Interscience, 1969).Google Scholar
[12] Kulkarni, R. S.. The values of sectional curvature in indefinite metrics. Comm. Math. Hely. 54 (1979), 173176.CrossRefGoogle Scholar
[13] Magid, M. A.. Shape operators of Einstein hypersurfaces in indefinite space forms. Proc. Amer. Math. Soc. 84 (1982), 237242.CrossRefGoogle Scholar
[14] Magid, M. A.. Indefinite Einstein hypersurfaces with A 2=–b2I. (Preprint).Google Scholar
[15] Magid, M. A.. Indefinite Einstein hypersurfaces with A 2 = O. (Preprint.)Google Scholar
[16] Meltsev, A. I.. Fundamentos de Algebra Lineal (Mir, Moscow, 1972).Google Scholar
[17] Smyth, B.. Differentialgeometry of complex hypersurfaces. Ann. of Math. 85 (1967), 246266.CrossRefGoogle Scholar
[18] Wolf, J. A.. Spaces of Constant Curvature. (McGraw-Hill, 1967).Google Scholar