Published online by Cambridge University Press: 24 October 2008
If S is an infinite, discrete, commutative semigroup then the semigroup algebra l1(S) is a commutative Banach algebra. Its dual is l∞(S), which is isometrically iso-morphic to C(βS), the space of continuous functions on the Stone-Čech compactification of S. This fact enables us to identify the second dual of l1(S) with M(βS), the space of bounded regular Borel measures on βS. Endowed with the Arens product the second dual is also a Banach algebra, so it is natural to ask whether a product may be defined in M(βS) without reference to l1(S). In §4 this is shown to be possible even when S is a non-discrete semitopological semigroup, provided that the operation in S may be extended to make βS into a left-topological semigroup in the manner of, for example, [2] where further references may be found. (Note, however, that the construction there is of a right-topological semigroup.) Having done this we may use results on βS to provide information about the measure algebra.