Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:26:46.679Z Has data issue: false hasContentIssue false

The Besicovitch dimension of Cartesian product sets

Published online by Cambridge University Press:  24 October 2008

H. G. Eggleston
Affiliation:
University CollegeSwansea

Extract

A. S. Besicovitch has defined the dimension of a point-set X in n-dimensional Euclidean space in terms of its exterior Hausdorff measure as follows (2). Let (δ, X) be any enumerable class of sets whose point-set union contains X and whose members are each of diameter less than δ. Let (δ, X) denote the class of all (δ, X).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Banach, S.Théorie dea opérations linéaires (Warsaw, 1932).Google Scholar
(2)Besicovitch, A. S.Linear sets of fractional dimensions. Math. Ann. 101 (1929), 161–93.CrossRefGoogle Scholar
(3)Besicovitch, A. S.Most concentrated and most rarefied sets. Acta Math. 62 (1934), 289300.CrossRefGoogle Scholar
(4)Besicovitch, A. S and Moran, P. A. P.The measure of product and cylinder sets. J. London Math. Soc. 20 (1945), 110–20.Google Scholar
(5)Besicovitch, A. S. and Ursell, H. D.Sets of fractional dimension. V. J. London Math. Soc. 12 (1937), 1825.CrossRefGoogle Scholar
(6)Choquet, Gustave. Ensembles singuliers et structure des ensembles mesurables pour les mesures de Hausdorff. Bull. Soc. Math. France, 74 (1946), 114.Google Scholar
(7)Loomis, H. L.The intrinsic measure theory of Riemannian and Euclidean metric spaces. Ann. Math. (2), 45 (1944), 367–74.CrossRefGoogle Scholar
(8)Mazur, S. Ref. in (1) and (9).Google Scholar
(9)Saks, S.Theory of the integral (Warsaw, 1937).Google Scholar