Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T15:22:43.826Z Has data issue: false hasContentIssue false

An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle

Published online by Cambridge University Press:  24 October 2008

R. G. McLenaghan
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge‡

Abstract

The validity of Huygens' principle in the sense of Hadamard's ‘minor premise’ is investigated for scalar wave equations on curved space-time. A new necessary condition for its validity in empty space-time is derived from Hadamard's necessary and sufficient condition using a covariant Taylor expansion in normal coordinates. A two component spinor calculus is then employed to show that this necessary condition implies that the plane wave space-times and Minkowski space are the only empty space-times on which the scalar wave equation satisfies Huygens' principle.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Asgeirsson, L.Some hints on Huygens' principle and Hadamard's conjecture. Comm. Pure Appl. Math. 9, (1956), 307326.CrossRefGoogle Scholar
(2)Bruhat, Y. The Cauchy Problem. Article in Gravitation an introduction to current research, edited by Witten, L. (Wiley, New York, 1962).Google Scholar
(3)Chevalier, M.Sur le noyau de diffusion de l'operator laplacien. C.R. Acad. Sci. Paris Sér. A–B. 264 (1967), 380382.Google Scholar
(4)Courant, R. & Hilbert, D.Methods of mathematical physics, Vol. 2 (Interscience; New York, 1962).Google Scholar
(5)De Witt, B. S. and Brehme, R. W.Radiation damping in a gravitational field. Ann. Physics 9 (1960), 220259.CrossRefGoogle Scholar
(6)Douglis, A.The problem of Cauchy for linear hyperbolic equations of second order Comm. Pure Appl. Math. 7 (1954), 271295.Google Scholar
(7)Douglis, A.A criterion for the validity of Huygens' principle. Comm. Pure Appl. Math. 9 (1956), 391402.CrossRefGoogle Scholar
(8)Ehlers, J. and Kundt, K. Exact solutions of the gravitational field equations. Article in Gravitation an introduction to current research, edited by Witten, L. (Wiley; New York, 1962).Google Scholar
(9)Goldberg, J. N. and Sachs, R. K.A theorem on Petrov types. Acta Phys. Polon. 22, (1962), 1323.Google Scholar
(10)Günther, P.Zur Gültigkeit des Huygensschen Princips bei partiellen Differential-gleichungen vom normalen hyperbolischen Typus. S.-B. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 100 (1952), 143.Google Scholar
(11)Günther, P.Ein Beispiel einer nichttrivailen Huygensschen Differentialgleichung mit vier unabhängigen Variablen. Arch. Rational Mech. Anal. 18 (1965), 103106.CrossRefGoogle Scholar
(12)Hadamard, J.Lectures on Cauchy's problem in linear partial differential equations (Yale University Press, New Haven, 1923).Google Scholar
(13)Hadamard, J.The problem of diffusion of waves. Ann. of Math. 43 (1942), 510522.Google Scholar
(14)Herglotz, G.Über die Bestimmung eines Linienelementes in normal Koordinaten aus dem Riemannschen Krümmgstensor. Math. Ann. 93 (1925), 4653.Google Scholar
(15)Künzle, H. P.Maxwell fields satisfying Huygens' principle. Proc. Cambridge Philos. Soc. 64 (1968), 779785.Google Scholar
(16)Mathisson, M.Eine neue Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus. Math. Ann. 107 (1932), 400419.Google Scholar
(17)Mathisson, M.Le problème de M. Hadamard relatif à la diffusion des ondes. Acta Math. 71 (1939), 249282.Google Scholar
(18)Newman, E. and Penrose, R.An approach to gravitational radiation by a method of spin coefficients. J. Mathematical Phys. 3 (1962), 566579.Google Scholar
(19)Penrose, R.A spinor approach to general relativity. Ann. Physics 10 (1960), 171201.Google Scholar
(20)Petrov, A. S.Einstein–Räume (Akademie-Verlag; Berlin, 1964).Google Scholar
(21)Pirani, F. A. E. Introduction to gravitational radiation theory, contained in Lectures on general relativity. Brandeis summer Institute in theoretical physics (Prentice-Hall; Engle-wood Cliffs, N.J., 1965).Google Scholar
(22)Ruse, H. S., Walker, A. G. and Willmore, T. J.Harmonic Spaces (Edizioni Cremonese; Rome, 1961).Google Scholar
(23)Schouten, J. A.Ricci-Calculus (Springer-Verlag; Berlin, 1954).Google Scholar
(24)Sobolev, S. L.Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. (N.S.) 1 (1936), 3970.Google Scholar
(25)Stellmacher, K. L.Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II. (1953) 10, 133138.Google Scholar
(26)Stellmacher, K. L.Eine Klasse Huygenscher Differentialgleichungen und ihre Integration. Math. Ann. 130 (1955), 219233.Google Scholar