Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T13:21:36.542Z Has data issue: false hasContentIssue false

Absolute Nörlund matrix summability of Fourier series based on inclusion theorems

Published online by Cambridge University Press:  24 October 2008

B. Kuttner
Affiliation:
Department of Pure Mathematics, University of Birmingham, Birmingham, B 15 2TT
B. E. Rhoades
Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405, U.S.A.

Extract

In a recent paper [39] the second author established sufficient conditions for a Nörlund matrix (N, p) to be stronger than a Cesaro matrix (C, α) of order α, for some positive α. This result was then used to show that a number of known theorems dealing with the Nörlund summability of Fourier series, or related series, can be more easily established, since the conditions placed on the Nörlund matrix imply that it is stronger than some (C, α) method, for which the summability theorem has already been established.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bailey, W. N.. Generalized Hypergeometric Series, Cambridgė Tracts in Math. no. 32. (Cambridge University Press, 1935).Google Scholar
[2]Bhatt, S. N. and Kakkar, V.. A note of the absolute Nörlund summability of a Fourier series. Indian J. Math. 11 (1969), 125130.Google Scholar
[3]Bhatt, S. N. and Kishore, N.. Absolute Nörlund summability of a Fourier series. Indian J. Math. 9 (1967), 259267.Google Scholar
[4]Bhatt, S. N. and Tripathi, S. S.. On the absolute Nörlund summability of a Fourier series. Indian J. Math. 13 (1971), 165176.Google Scholar
[5]Bosanquet, L. S.. Note on the absolute summability (C) of a Fourier series. J. London Math. Soc. (2) 11 (1936), 1115.CrossRefGoogle Scholar
[6]Bosanquet, L. S.. The absolute summability of a Fourier series. Proc. London Math. Soc. (2) 41 (1936), 517528.CrossRefGoogle Scholar
[7]Bosanquet, L. S. and Hyslop, J. M.. On the absolute summability of the allied series of a Fourier series. Math. Z. 42 (1937), 489512.CrossRefGoogle Scholar
[8]Das, G. and Mohapatra, P. C.. Necessary and sufficient conditions for absolute Nörlund summability of Fourier series. Proc. London Math. Soc. (3) 41 (1980), 217253.CrossRefGoogle Scholar
[9]Dikshit, G. D.. On the absolute Nörlund summability of a Fourier series. Indian J. Math. 9 (1967), 331342.Google Scholar
[10]Dikshit, G. D.. A note of the absolute Nörlund summability of conjugate Fourier series. J. Austral. Math. Soc. 12 (1971), 8690.CrossRefGoogle Scholar
[11]Dikshit, G. D.. Absolute Nörlund summability of Fourier series. Math. Chronicle 2 (1982/1983), 117124.Google Scholar
[12]Dikshit, G. D.. A note on the absolute summability of Fourier series. Indian J. Math. 15 (1973), 5764.Google Scholar
[13]Dikshit, H. P.. On the absolute Nörlund summability of a Fourier series. Proc. Japan Acad. Ser. A Math. Sci. 40 (1964), 813817.Google Scholar
[14]Dikshit, H. P.. On the absolute Nörlund summability of a Fourier series I. Riv. Mat. Univ. Parma (2) 7 (1966), 171176.Google Scholar
[15]Dikshit, H. P.. On the absolute summability of a Fourier series and its conjugate series. Kodai Math. Sem. Reports 20 (1968), 448453.CrossRefGoogle Scholar
[16]Dikshit, H. P.. Absolute (N, pn) summability of Fourier series. Rend. Circ. Mat. Palermo (2) 1 (1968), 319330.Google Scholar
[17]Dikshit, H. P.. Absolute summability of a series associated with a Fourier series. Proc. Amer. Math. Soc. 22 (1969), 316318.CrossRefGoogle Scholar
[18]Dikshit, H. P.. On the summability (N,pn) of a Fourier series at a point. Proc. Cambridge Philos. Soc. 65 (1969), 495505.CrossRefGoogle Scholar
[19]Dikshit, H. P.. On a class of Nörlund means and Fourier series. Pacific J. Math. 33 (1970), 559569.CrossRefGoogle Scholar
[20]Dikshit, H. P.. Absolute total-effective (N,pn) means. Proc. Cambridge Philos Soc. 69 (1971), 107122.CrossRefGoogle Scholar
[21]Dikshit, H. P. and Kumar, A.. Absolute total-effectiveness of (N, pn) means, I. Proc. Cambridge Philos. Soc. 77 (1975), 103198.CrossRefGoogle Scholar
[22]Hsiang, F. C.. On the absolute Nörlund summability of a Fourier series. J. Aust ral. Math. Soc. 9 (1969), 161166.CrossRefGoogle Scholar
[23]Jurkat, W. B., Kumar, A. and Peyerimhoff, A.. On the absolute Fourier-effectiveness of summability methods. J. London Math. Soc. (2) 31 (1985), 101114.CrossRefGoogle Scholar
[24]Kakkar, V.. A note on the absolute Nörlund summability of the conjugate series of a Fourier series. Univ. Allahabad Studies (N.S.) 2 (1970), 231237.Google Scholar
[25]Kanno, K.. On the absolute Nörlund summability of a series related to a Fourier series. Bull. Yamagata Univ. Natur. Sci. 6 (1963), 2534.Google Scholar
[26]Kishore, N.. Absolute Nörlund summability of the conjugate series of a Fourier series. Indian J. Math. 11 (1969), 2935.Google Scholar
[27]Kishore, N. and Hotta, G. C.. On absolute Nörlund summability of a Fourier series. Ann. Univ. Timisoarc Ser. Sti. Mat. 10 (1972), 171182.Google Scholar
[28]Kishore, N. and Hotta, G. C.. On absolute Nörlund summability of a conjugate series. Indian J. Math. 14 (1972), 3344.Google Scholar
[29]Kogbetliantz, E.. Sur les series absolument sommables par le methode des moyennes arithmetique. Bull. Sci. Math. 49 (1925), 234251.Google Scholar
[30]Lal, S. N.. On the absolute Nörlund summability of Fourier series. Indian J. Math. 13 (1971), 5167.Google Scholar
[31]Mazhar, S. M.. On the absolute convergence of a series associated with a Fourier series. Math. Scand. 21 (1967), 90104.CrossRefGoogle Scholar
[32]Mazhar, S. M.. On the absolute Nörlund summability of a series associated with a Fourier series. Riv. Mat. Univ. Parma (2) 12 (1971), 269279.Google Scholar
[33]Mohanty, R.. The absolute Cesaro summability of some series associated with a Fourier series and its allied series. J. London Math. Soc. (2) 25 (1950), 6367.CrossRefGoogle Scholar
[34]Mohanty, R. and Mohapatra, S.. On the absolute convergence of a class associated with a Fourier series. Proc. Amer. Math. Soc. 7 (1956), 10491053.CrossRefGoogle Scholar
[35]Pati, T.. On the absolute Nörlund summability of a Fourier series. J. London Math. Soc. (2) 34 (1959), 153160.CrossRefGoogle Scholar
[36]Pati, T.. Addendum: On the absolute Nörlund summability of a Fourier series. J. London Math. Soc. (2) 37 (1962), 256.CrossRefGoogle Scholar
[37]Pati, T.. On the absolute Nörlund summability of the conjugate series of a Fourier series. J. London Math. Soc. (2) 38 (1963), 204214.CrossRefGoogle Scholar
[38]Pati, T.. On the absolute summability of a Fourier series by Nörlund means. Math. Z. 88 (1965), 244249.CrossRefGoogle Scholar
[39]Rhoades, B. E.. Matrix summability of Fourier series based on inclusion theorems. Math. Proc. Cambridge Philos. Soc. 100 (1986), 545557.CrossRefGoogle Scholar
[40]Singh, T.. Absolute Nörlund summability of a Fourier series. Indian J. Math. 6 (1964), 129136.Google Scholar
[41]Szu-Lei, W.. On the absolute Nörlund summability of a Fourier series and its conjugate series. Acta. Math. Sinica 15 (1965), 559573.Google Scholar
[42]Varshney, O. P.. On a sequence of Fourier coefficients. Proc. Amer. Math. Soc. 10 (1959), 790795.CrossRefGoogle Scholar
[43]Wang, F. T.. A remark on (C) summability of Fourier series. J. London Math. Soc. (2) 22 (1947), 4047.CrossRefGoogle Scholar