Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T21:14:23.916Z Has data issue: false hasContentIssue false

Stability of Traveling Waves in Partly ParabolicSystems

Published online by Cambridge University Press:  17 September 2013

A. Ghazaryan*
Affiliation:
Department of Mathematics, Miami University, Oxford, OH 45056 USA
Y. Latushkin
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
S. Schecter
Affiliation:
Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695 USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We review recent results on stability of traveling waves in partly parabolicreaction-diffusion systems with stable or marginally stable equilibria. We explain howattention to what are apparently mathematical technicalities has led to theorems thatallow one to convert spectral calculations, which are used in the sciences and engineeringto study stability of a wave, into detailed, theoretically-based information about thebehavior of perturbations of the wave.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkutlu, I. Y., Yortsos, Y. C.. The dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 134 (2003), 229247. CrossRefGoogle Scholar
Balasuriya, S., Gottwald, G., Hornibrook, J., Lafortune, S.. High Lewis number combustion wavefronts: a perturbative Melnikov analysis. SIAM J. Appl. Math., 67 (2007), 464486. CrossRefGoogle Scholar
Bates, P. W., Jones, C. K. R. T.. Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2, 1–38, Dynam. Report. Ser. Dynam. Systems Appl. vol. 2. Wiley, Chichester, 1989.
Bates, P., Lu, K., Zeng, C.. Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Trans. Amer. Math. Soc., 352 (2000), 46414676. CrossRefGoogle Scholar
Bates, P., Lu, K., Zeng, C.. Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc., 135 (1998), no. 645.
Bayliss, A., Matkowsky, B.. Two routes to chaos in condensed phase combustion. SIAM J. Appl. Math., 50 (1990), 437459. CrossRefGoogle Scholar
Giovangigli, V.. Nonadiabatic plane laminar flames and their singular limits. SIAM J. Math. Anal., 21 (1990), 13051325. CrossRefGoogle Scholar
Beck, M., Ghazaryan, A., Sandstede, B.. Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities. J. Differential Equations, 246 (2009), 43714390. CrossRefGoogle Scholar
Brand, T., Kunze, M., Schneider, G., Seelbach, T.. Hopf bifurcation and exchange of stability in diffusive media. Arch. Ration. Mech. Anal., 171 (2004), 263296. CrossRefGoogle Scholar
R. J. Briggs. Electron-stream interaction with plasmas. MIT Press, Cambridge, MA, 1964.
Capasso, V., Maddalena, L.. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biology, 13 (1981), 173184. CrossRefGoogle ScholarPubMed
Chen, X.-Y., Hale, J. K., Tan, B.,. Invariant foliations for C1 semigroups in Banach spaces. J. Differential Equations, 139 (1997), 283318. CrossRefGoogle Scholar
C. Chicone, Y. Latushkin. Evolution semigroups in dynamical systems and differential equations. Math. Surv. Monogr., 70, AMS, Providence, 1999.
Chicone, C., Latushkin, Y.. Center manifolds for infinite-dimensional nonautonomous differential equations. J. Differential Equations, 141 (1997), 356399. CrossRefGoogle Scholar
Deng, B.. The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal., 22 (1991), 653679. CrossRefGoogle Scholar
K. Engel, R. Nagel. One-parameter semigroups for linear evolution equations. Springer, New York, 2000.
Evans, J. W.. Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J., 22 (1972), 577593. CrossRefGoogle Scholar
Feireisl, E.. Bounded, locally compact global attractors for semilinear damped wave equations on RN. Diff. Int. Eqns., 9 (1996), 11471156. Google Scholar
Ghazaryan, A.. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58 (2009), 181212. CrossRefGoogle Scholar
Ghazaryan, A., Jones, C. K. R. T.. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst., 24 (2009), 809826. CrossRefGoogle Scholar
Ghazaryan, A., Latushkin, Y., Schecter, S., de Souza, A. J.. Stability of gasless combustion fronts in one-dimensional solids. Arch. Ration. Mech. Anal., 198 (2010), 9811030. CrossRefGoogle Scholar
Ghazaryan, A., Latushkin, Y., Schecter, S.. Stability of traveling waves for degenerate systems of reaction diffusion equations. Indiana Univ. Math. J., 60 (2011), 443472. CrossRefGoogle Scholar
Ghazaryan, A., Latushkin, Y., Schecter, S.. Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models. SIAM J. Math. Anal., 42 (2010), 24342472. CrossRefGoogle Scholar
Ghazaryan, A., Sandstede, B.. Nonlinear convective instability of Turing-unstable fronts near onset: a case study. SIAM J. Appl. Dyn. Syst., 6 (2007), 319347. CrossRefGoogle Scholar
A. Ghazaryan, P. Simon, S. Schecter. Gasless combustion fronts with heat loss. To appear in SIAM J. Appl. Math.
Gordon, P.. Recent mathematical results on combustion in hydraulically resistant porous media. Math. Model. Nat. Phenom., 2 (2007), 5676. CrossRefGoogle Scholar
Hadeler, K. P., Lewis, M. A.. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Canadian Appl. Math. Quart, 10 (2002), 473499. Google Scholar
Heinze, S., Schweizer, B.. Creeping fronts in degenerate reaction diffusion systems. Nonlinearity, 18 (2005), 24552476. CrossRefGoogle Scholar
D. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics vol. 840. Springer, New York, 1981.
T. Kapitula, K. Promislow. An introduction to spectral and dynamical stability. Springer, New York, to appear.
Kazmierczak, B., Volpert, V.. Travelling waves in partially degenerate reaction-diffusion systems. Math. Model. Nat. Phenom., 2 (2007), 106125. CrossRefGoogle Scholar
Kazmierczak, B., Volpert, V.. Calcium waves in a system with immobible buffers as a limit of waves with a system with nonzero diffusion. Nonlinearity, 21 (2008), 7196. CrossRefGoogle Scholar
Kazmierczak, B., Volpert, V.. Mechano-chemical calcium waves in systems with immobile buffers. Arch. Mech., 60 (2008), 322 . Google Scholar
Kazmierczak, B., Volpert, V.. Travelling calcium waves in a system with non-diffusing buffers. Math. Methods and Models in Appl. Sci., 18 (2008), 883912. CrossRefGoogle Scholar
Kreiss, G., Kreiss, H.-O., Petersson, N. A.. On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems. SIAM J. Numer. Anal., 31 (1994), 1571604. CrossRefGoogle Scholar
Kunze, M., Schneider, G.. Exchange of stability and finite-dimensional dynamics in a bifurcation problem with marginally stable continuous spectrum. Z. Angew. Math. Phys., 55 (2004), 383399. CrossRefGoogle Scholar
Latushkin, Y., Layton, B.. The optimal gap condition for invariant manifolds. Discrete Contin. Dynam. Systems, 5 (1999), 233268. Google Scholar
Latushkin, Y., Prüss, J., Schnaubelt, R.. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595633. Google Scholar
Li, Y., Wu, Y.. Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems. SIAM J. Math. Anal., 44 (2012), 14741521. CrossRefGoogle Scholar
Luckhaus, S., Triolo, L.. The continuum reaction-diffusion limit of a stochastic cellular growth model. Rend. Mat. Acc. Lincei„ 15 (2004), 215223. Google Scholar
A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progr. Nonlin. Diff. Eqns. Appl. vol. 16, Birkhäuser, Basel, 1995.
Mielke, A., Schneider, G.. Attractors for modulation equations on unbounded domains—existence and comparison. Nonlinearity, 8 (1995), 743768. CrossRefGoogle Scholar
J. D. Murray. Mathematical biology. I. An introduction and II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics vols. 17, 18. Springer, New York, 2002, 2003.
Nii, S.. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh-Nagumo equations. SIAM J. Math. Anal., 28 (1997), 10941112. CrossRefGoogle Scholar
Pego, R. L., Weinstein, M. I.. Asymptotic stability of solitary waves. Comm. Math. Phys., 164 (1994), 305349. CrossRefGoogle Scholar
Roques, L.. Study of the premixed flame model with heat losses. The existence of two solutions. European J. Appl. Math., 16 (2005), 741765. CrossRefGoogle Scholar
J. Rottmann-Matthes. Computation and stability of patterns in hyperbolic-parabolic systems. Shaker Verlag, Aachen, 2010.
Rottman-Matthes, J.. Linear stability of travelling waves in first-order hyperbolic PDEs. J. Dynam. Differential Equations, 23 (2011), 365393. CrossRefGoogle Scholar
Rottmann-Matthes, J.. Stability of parabolic-hyperbolic traveling waves. Dynamics of Part. Diff. Eqns., 9 (2012) 2962. CrossRefGoogle Scholar
Rottmann-Matthes, J.. Stability and freezing of nonlinear waves in first order hyperbolic PDEs. J. Dynam. Differential Equations, 24 (2012), 341367. CrossRefGoogle Scholar
Rottmann-Matthes, J.. Stability and freezing of waves in non-linear hyperbolic-parabolic systems. IMA J. Appl. Math., 77 (2012), 420429. CrossRefGoogle Scholar
Sandstede, B.. Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh–Nagumo equation. SIAM J. Math. Anal., 29 (1998), 183207. CrossRefGoogle Scholar
B. Sandstede. Stability of traveling waves. In Handbook of dynamical systems, vol. 2, 983–1055. North-Holland, Amsterdam, 2002.
Sandstede, B., Scheel, A.. Absolute and convective instabilities of waves on unbounded and large bounded domains. Phys. D, 145 (2000), 233277. CrossRefGoogle Scholar
Sattinger, D. H.. On the stability of waves of nonlinear parabolic systems. Adv. Math., 22 (1976), 312355. CrossRefGoogle Scholar
G. Sell, Y. You. Dynamics of evolutionary equations. Applied Mathematical Sciences vol. 143, Springer, 2002.
Simon, P., Merkin, J., Scott, S.. Bifurcations in non-adiabatic flame propagation models. Focus on Combustion Research (2006), 315–357.
Simon, P., Kalliadasis, S., Merkin, J.H., Scott, S.K.. Inhibition of flame propagation by an endothermic reaction. IMA J. Appl. Math., 68 (2003), 537562. CrossRefGoogle Scholar
Simon, P., Kalliadasis, S., Merkin, J.H., Scott, S.K.. Stability of flames in an exothermic-endothermic system. IMA J. Appl. Math., 69 (2004), 175203. CrossRefGoogle Scholar
Simon, P., Kalliadasis, S., Merkin, J.H., Scott, S.K.. On the structure of the spectra for a class of combustion waves. J. Math. Chem., 35 (2004), 309328. CrossRefGoogle Scholar
Simon, P., Merkin, J., Scott, S.. Bifurcations in non-adiabatic flame propagation models. Focus on Combustion Research (2006), 315–357.
Tsai, J.-C.. Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin. Dyn. Syst., 21 (2008), 601623. CrossRefGoogle Scholar
Tsai, J.-C., Sneyd, J.. Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math., 66 (2005), 237265. CrossRefGoogle Scholar
Tsai, J.-C., Zhang, W., Kirk, V., Sneyd, J.. Traveling waves in a simplified model of calcium dynamics. SIAM J. Appl. Dyn. Systems, 11 (2012), 11491199. CrossRefGoogle Scholar
J. M. A. M. van Neerven. The asymptotic behavior of semigroups of linear operators. Operator Theory: Advances and Applications vol. 88. Birkhäuser, Basel, 1996.
van Saarloos, W.. Front propagation into unstable states. Phys. Rep., 386 (2003), 29222. CrossRefGoogle Scholar
Varas, F., Vega, J.. Linear stability of a plane front in solid combustion at large heat of reaction. SIAM J. Appl. Math., 62 (2002), 18101822. CrossRefGoogle Scholar
V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In Dispersal, individual movement and spatial ecology: a mathematical perspective. Lecture Notes in Mathematics vol. 2071, 331–354. Springer, New York, 2013.
Yanagida, E.. Stability of travelling front solutions of the FitzHugh–Nagumo equations. Math. Comput. Modelling, 12 (1989), 289301. CrossRefGoogle Scholar
Zumbrun, K., Howard, P.. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47 (1998), 741871. CrossRefGoogle Scholar