Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T01:06:42.290Z Has data issue: false hasContentIssue false

Spatial Demogenetic Model for Studying Phenomena Observed uponIntroduction of the Ragweed Leaf Beetle in the South of Russia

Published online by Cambridge University Press:  28 November 2013

Yu. V. Tyutyunov*
Affiliation:
Institute of Arid Zones, Southern Scientific Centre of the Russian Academy of Sciences Chekhov street, 41, 344006 Rostov-on-Don, Russia Vorovich Research Institute of Mechanics and Applied Mathematics, Southern Federal University Stachki street, 200/1, 344090 Rostov-on-Don, Russia
O. V. Kovalev
Affiliation:
Zoological Institute of the Russian Academy of Sciences University Quay, 1, 199034 Saint Petersburg, Russia
L. I. Titova
Affiliation:
Vorovich Research Institute of Mechanics and Applied Mathematics, Southern Federal University Stachki street, 200/1, 344090 Rostov-on-Don, Russia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The introduction of the ragweed leaf beetle in the South of Russia in 1978–1989 wasaccompanied by a number of spectacular phenomena that determined the general success ofthe ragweed control and further dispersal and acclimatization of the beetles:(i) formation of solitary population waves (SPW), characterized by anextremely high density of the phytophage population at the narrow band of the front of amoving wave defoliating nearly all ragweed plants, and (ii) rapid, within5-6 generations, development of flight in the leaf beetle species that in its homelandlost the ability to fly. We present here a demogenetic model capable of reproducing boththese phenomena, assuming that the flight ability of a phytophage population is governedby a single diallelic locus with flight and flightless alleles that determine threegenotypes of the ragweed leaf beetle. Simulation results agree well with the practicalrecommendation of retaining a high density of common ragweed in the release area in orderto provide the necessary conditions for the initial increase of the leaf beetle populationand the formation of the wave. The model confirms the earlier hypothesis that the SPW isthe key factor that determines efficiency of weed biocontrol program. We demonstrate alsothat the formation of the wave has crucially accelerated the development of the beetles’ability to fly.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

W.C. Allee. Animal aggregations: a study in general sociology. Chicago Univ. Press, Chicago, 1931.
Arditi, R., Tyutyunov, Yu., Morgulis, A., Govorukhin, V., Senina, I.. Directed movement of predators and the emergence of density-dependence in predator-prey models. Theor. Popul. Biol., 59 (2001), No. 3, 207221. CrossRefGoogle ScholarPubMed
A.K. Brodsky. Structure, functioning and evolution of the insect wing articulation. Lectures on the XVI Annual Readings in Memory of N.A. Kholodkovsky (1 April, 1988). Nauka, Leningrad, 1989, 3–47.
A.K. Brodsky. The evolution of insect flight. Oxford University Press, Oxford, New York, Tokio, 1994.
V.N. Cherkashin (1985) Acclimatization of the ragweed leaf beetle Zygogramma Suturalis Fabr. (Coleoptera, Chrysomelidae) in Stavropol Krai and possibilities of its use for control of common ragweed. Summary of PhD thesis (06.01.11 – plant protection). Georgian Research Institute of Plant Protection, Tbilisi, 1985, 24 pp. [in Russian]
Courchamp, F., Clutton-Brock, T., Grenfell, B.. Inverse density dependence and the Allee effect. Trends Ecol. Evol., 14 (1999), No. 10, 405410. CrossRefGoogle ScholarPubMed
T. Czárán. Spatiotemporal models of population and community dynamics. Chapman and Hall, London, 1998.
L. Edelstein-Keshet. Mathematical models in biology. McGraw-Hill, New York, 1988.
Edmonds, C.A., Lillie, A.S., Cavalli-Sforza, L.L.. Mutations arising in the wave front of an expanding population. Proc. Nat. Acad. Sci. USA, 101 (2004), 975979. CrossRefGoogle ScholarPubMed
Facon, B., Crespin, L., Loiseau, A., Lombaert, E., Magro, A., Estoup, A.. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evol. Appl., 4 (2011), 7188. CrossRefGoogle ScholarPubMed
Fagan, W.F., Lewis, M.A., Neubert, M.G., Van Den Driessche, P.. Invasion theory and biological control. Ecol. Lett., 5 (2002), No. 1, 148157. CrossRefGoogle Scholar
Gard, B., Bretagnolle, F., Dessaint, F., Laitung, B.. Invasive and native populations of common ragweed exhibit strong tolerance to foliar damage. Basic Appl. Ecol., 14 (2013), 2835. CrossRefGoogle Scholar
Gascoigne, J., Berec, L., Gregory, S., Courchamp, F.. Dangerously few liaisons: a review of mate-finding Allee effects. Popul. Ecol., 51 (2009), No. 3, 355372. CrossRefGoogle Scholar
Gerber, E., Schaffner, U., Gassmann, A., Hinz, H.L., Seier, M., Müller-Schärer, H.. Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Res., 51 (2011), 559573. CrossRefGoogle Scholar
R.D. Goeden, L.A. Andres. Three recent successes outside of North America. in Handbook of Biological Control (T.S. Bellows, T.W. Fisher, Eds.). Academic Press, San Diego, CA, USA, 1999, 884–885.
Govorukhin, V.N., Morgulis, A.B., Tyutyunov, Y.V.. Slow taxis in a predator-prey model. Dokl. Math., 61 (2000), No. 3, 420422. Google Scholar
Grünbaum, D.. Using spatially explicit model to characterize foraging performance in heterogeneous landscape. Am. Nat., 151 (1998), No. 2, 97115. CrossRefGoogle Scholar
Hallatschek, O., Nelson, D.R.. Gene surfing in expanding populations. Theor. Popul. Biol., 73 (2008), 158170. CrossRefGoogle ScholarPubMed
Harris, P.. Classical biocontrol of weeds: Its definitions, selection of effective agents, and administrative-political problems. Can. Entomol., 123 (1991), 827849. CrossRefGoogle Scholar
J.H. Hoffmann, V.C. Moran. Assigning success in biological weed control: what do we really mean? in Proceedings of the XII International Symposium on Biological Control of Weeds (M.H. Julien, R. Sforza, M.C. Bon, H.C. Evans, P.E. Hatcher, H.L. Hinz, B.G. Rector, Eds.), CABI, Wallingford, UK, 2008, 687–692.
Huffaker, C.B.. A comparison of the status of biological control of St. John’s wort in California and Australia. Mushi, 39 (1967), No. suppl., 5173. Google Scholar
Igrc, J., DeLoach, J.C., Žlof, V.. Release and establishment of Zygogramma suturalis F. (Coleoptera: Chrysomelidae L.). Biol. Control, 5 (1995), No. 2, 203208. CrossRefGoogle Scholar
Ismailov, V.Y., Agas’eva, I.S.. Predaceous stink bug Perillus bioculatus Fabr. A novel view on possibility of acclimatization and perspectives of use. Zashchita i karantin rasteniy, 2 (2010), 3031. [in Russian] Google Scholar
M.N. Julien, M.W. Griffiths. Biological control of weeds: a world catalogue of agents and their target weeds, 4th edn. CABI Publishing, Wallingford, UK, 1998.
Keller, E.F., Segel, L.A.. Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol., 26 (1970), 399415. CrossRefGoogle Scholar
Kiss, L.. Is Puccinia xanthii a suitable biological control agent of Ambrosia artemisiifolia? Biocontrol Sci. Techn., 17 (2007), No. 5, 535539. CrossRefGoogle Scholar
V.A. Kostitzin. Biologie mathématique. Paris, Librairie Armand Colin. 1937.
Kostitzin, V.A.. Equations diffèrentielles générales du problème de sélection naturelle. C. R. Acad. Sci, 206 (1938), 570572. Google Scholar
Kostitzin, V.A.. Sur les coefficients mendeliens d’hérédité. C. R. Acad. Sci, 206 (1938), 883885. Google Scholar
Kostitzin, V.A.. Sur les équations diffèrentielles du problème de la sélection mendélienne. C. R. Acad. Sci, 203 (1936), 156157. Google Scholar
O.V. Kovalev. A universal model of the biosphere evolution and the consciousness evolution. International Symposium “Ecosystem Evolution”. Paleontological Institute of the Russian Academy of Sciences, Moscow, 1995, p. 47.
O.V. Kovalev. Microevolutioal processes in population of Zygogramma suturalis F. (Coleoptera, Chrisomelidae) introduced from Nort America to the USSR. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 139–165. [in Russian]
O.V. Kovalev. Spread of adventive plants of Ambrosieae tribe in Eurasia and methods of bilogical control of Ambrosia L. (Asteraceae). in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 7–23. [in Russian]
O.V. Kovalev. The solitary population wave, a physical phenomenon accompanying the introduction of a chrysomelid. in: New Developments in the Biology of Chrysomelidae. (P. Jolivet, Ed.) SPB Academic Publishing bv, The Hague, The Netherlands, 2004, 91–601.
Kovalev, O.V., Tyutyunov, Yu.V., Iljina, L.P., Berdnikov, S.V.. On the efficacy of introduction of American insects-phytophages of common ragweed (Ambrosia artemisiifolia L.) in the South of Russia. Entomological Review, 92 (2013), 251264. [in Russian]. Google Scholar
Kovalev, O.V., Vechernin, V.V.. Description of a new wave process in population with reference to introduction and spread of the leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae). Entomological Review, 65 (1986), 93112. Google Scholar
O.V. Kovalev, V.V. Vechernin. Discovering and description of the phenomenon of formation of solitary population wave of introduced insects. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 105–120. [in Russian]
O.V. Kovalev, S.G. Zhilin. (Eds.) Phase transition in biological systems and the evolution of biodiversity. Nuclear Physics Institute Publishing House, St. Petesburg, 2007. [in Russian]
Lehe, R., Hallatschek, O., Peliti, L.. The rate of beneficial mutations surfing on the wave of a range expansion. PLoS Comput. Biol., 8 (2012), No. 3, e1002447. CrossRefGoogle ScholarPubMed
Lewis, M.A.. Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistent “waves” of damage. Theor. Popul. Biol., 45 (1994), No. 3, 277312. CrossRefGoogle Scholar
L.N. Medvedev. Variability of Zygogramma suturalis F. population introduced to the USSR. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 177–181. [in Russian]
Moran, P.J., DeLoach, C.J., Dudley, T.L., Sanabria, J.. Open field host selection and behavior by tamarisk beetles (Diorhabda spp.) (Coleoptera: Chrysomelidae) in biological control of exotic saltcedars (Tamarix spp.) and risks to non-target athel (T. aphylla) and native Frankenia spp. Biol. Control, 50 (2009), 243261. CrossRefGoogle Scholar
Morozov, A., Petrovskii, S.. Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. B. Math. Biol., 71 (2009), 863887. CrossRefGoogle Scholar
Murdoch, W.W., Chesson, J., Chesson, P.L.. Biological control in theory and practice. Am. Nat., 125 (1985), No. 3, 344366. CrossRefGoogle Scholar
J.D. Murray. Mathematical biology. Springer-Verlag, New York, 1993.
J.D. Murray. Mathematical biology II: Spatial models and biomedical applications. Springer-Verlag, New York, 2003.
W. Nentwig (Ed.). Biological invasions. Ser. in Ecological studies. vol. 193. Springer, Berlin, 2007.
A. Okubo, S.A. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York, 2001.
B. Palmer, R.E.C. McFadyen. Ambrosia artemisiifolia L. — annual ragweed. in Biological control of weeds in Australia (M.H. Julien, R.E.C. McFadyen, J.M. Cullen, Eds.) CSIRO, Collingwood, Australia, 2012, 52–59.
S.V. Petrovskii, B.L. Li. Exactly solvable models of biological invasion. CRC Press, Boca Raton, 2006.
S.Y. Reznik, I.A. Spasskaya, M.Y. Dolgovskaya, M.G. Volkovitsh, V.F. Zaitzev. The ragweed leaf beetle Zygogramma suturalis F. (Coleoptera: Chrysomelidae) in Russia: current distribution, abundance and implication for biological control of common ragweed, Ambrosia artemisiifolia L. in Proceedings of the XII International Symposium on Biological Control of Weeds (M.H. Julien R. Sforza, M.C. Bon, H.C. Evans, P.E. Hatcher, H.L. Hinz, B.G. Rector, Eds.), CABI, Wallingford, UK, 2008, 614–619.
Room, P.M.. Ecology of a simple plant-herbivore system. Biological control of Salvinia. Trends Ecol. Evol., 5, (1990), No. 3, 7479. CrossRefGoogle Scholar
Room, P.M., Thomas, P.A.. Nitrogen and establishment of a beetle for biological control of the floating weed Salvinia in Papua New Guinea. J. Appl. Ecol., 22 (1985), 139156. CrossRefGoogle Scholar
Roques, L., Garnier, J., Hamel, F., Klein, E.K.. Allee effect promotes diversity in traveling waves of colonization. Proc. Nat. Acad. Sci. USA, 109 (2012), No. 23, 88288833. CrossRefGoogle ScholarPubMed
Sapoukhina, N., Tyutyunov, Yu., Arditi, R.. The role of prey-taxis in biological control: a spatial theoretical model. Am. Nat., 162 (2003), No. 1, 6176. CrossRefGoogle Scholar
W.E. Schiesser. The numerical method of lines: integration of partial differential equations. Academic Press, San Diego, 1991.
Scholze, E., Pichler, H., Heran, H.. Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften, 51 (1964), 6970. CrossRefGoogle Scholar
S.O. Sergievskii. Choosing of partner for copulation in populations of Zygogramma suturalis F. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 173–176. [in Russian]
Stephens, P.A., Sutherland, W.J.. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol., 14 (1999), 401405. CrossRefGoogle Scholar
H.L. Sweetman. The Principles of Biological Control. W.C. Brown Co, Dubuque, Iowa, 1958.
Tourniaire, R., Ferran, A., Giuge, L., Piotte, C., Gambier, J.. A natural flightless mutation in the ladybird, Harmonia axyridis. Entomologia Experimentalis et Applicata, 96 (2000), 3338. CrossRefGoogle Scholar
Tyutyunov, Yu.V., Sapoukhina, N.Yu., Senina, I.N., Arditi, R.. Explicit model for searching behavior of predator. Zhurnal Obshchei Biologii, 63 (2002), No. 2, 137148. [in Russian] Google Scholar
Tyutyunov, Yu., Senina, I., Arditi, R.. Clustering due to acceleration in the response to population gradient: a simple self-organization model. Am. Nat., 164 (2004), No. 6, 722735. Google Scholar
Tyutyunov, Yu., Titova, L., Arditi, R.. A minimal model of pursuit-evasion in a predator-prey system. Math. Model. Nat. Phenom., 2 (2007), No. 4, 122134. CrossRefGoogle Scholar
Tyutyunov, Yu., Titova, L., Arditi, R.. Predator interference emerging from trophotaxis. Ecol. Complex., 5 (2008), No. 1, 4858. CrossRefGoogle Scholar
Tyutyunov, Yu.V., Zagrebneva, A.D., Surkov, F.A., Azovsky, A.I.. Microscale patchiness of the distribution of copepods (Harpacticoida) as a result of trophotaxis. Biophysics, 54 (2009), No. 3, 355360. CrossRefGoogle Scholar
Tyutyunov, Yu., Zhadanovskaya, E., Bourguet, D., Arditi, R.. Landscape refuges delay resistance of the European corn borer to Bt-maize: a demo-genetic dynamic model. Theor. Popul. Biol., 74 (2008), 138146. CrossRefGoogle Scholar
Tyutyunov, Yu.V., Zhadanovskaya, E.A., Arditi, R., Medvinsky, A.B.. A spatial model of the development of pest resistance to a transgenic insecticidal crop: European corn borer on Bt maize. Biophysics, 52 (2007), No. 1, 5267. CrossRefGoogle Scholar
T.C.R. White. The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin, 1993.
T.C.R. White. Why does the world stay green?: nutrition and survival of plant-eaters. CSIRO Publishing, Collingwood, Australia, 2005.
Yamanaka, T., Tanaka, K., Otuka, A., Bjørnstad, O.N.. Detecting spatial interactions in the ragweed (Ambrosia artemissifolia L.) and the ragweed beetle (Ophraella communaLeSage) populations. Ecol. Res., 22 (2007), 185196. CrossRefGoogle Scholar
Zhou, S.-R., Liu, Y.-F., Wang, G.. The stability of predator-prey systems subject to the Allee effects. Theor. Popul. Biol., 67 (2005), 2331. CrossRefGoogle ScholarPubMed