Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T21:03:42.944Z Has data issue: false hasContentIssue false

Scaling of Stochasticity in Dengue Hemorrhagic FeverEpidemics

Published online by Cambridge University Press:  06 June 2012

M. Aguiar
Affiliation:
Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal Fundação Ezequiel Dias, Serviço de Virologia e Riquetisioses, Laboratório de dengue e febre amarela Rua Conde Pereira Carneiro 80, 30510-010 Belo Horizonte-MG, Brazil
B.W. Kooi
Affiliation:
Faculty of Earth and Life Sciences, Department of Theoretical Biology, Vrije Universiteit, De Boelelaan 1087, NL 1081 HV Amsterdam, The Netherlands
J. Martins
Affiliation:
Department of Mathematics, School of Technology and Management, Polytechnic Institute of Leiria Campus 2, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
N. Stollenwerk*
Affiliation:
Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In this paper we analyze the stochastic version of a minimalistic multi-strain model,which captures essential differences between primary and secondary infections in denguefever epidemiology, and investigate the interplay between stochasticity, seasonality andimport. The introduction of stochasticity is needed to explain the fluctuations observedin some of the available data sets, revealing a scenario where noise and complexdeterministic skeleton strongly interact. For large enough population size, the stochasticsystem can be well described by the deterministic skeleton gaining insight on the relevantparameter values purely on topological information of the dynamics, rather than classicalparameter estimation of which application is in general restricted to fairly simpledynamical scenarios.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Centers for Disease Control and Prevention. Dengue, (2011). Retrieved from http://www.cdc.gov/dengue/
Alonso, D., McKane, A., Pascual, M.. Stochastic Amplification in Epidemics. Journal of the Royal Society Interface, (2006), 4, 575-582. CrossRefGoogle ScholarPubMed
Gubler, D. J.. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology, (2002), 10, 100103. CrossRefGoogle ScholarPubMed
Gillespie, D. T.. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, (1976), 22, 403434. CrossRefGoogle Scholar
Gillespie, D. T.. Monte Carlo simulation of random walks with residence time dependent transition probability rates. Journal of Computational Physics, (1978), 28, 395407. CrossRefGoogle Scholar
Gubler, J. D., Suharyono, W., Tan, R., Abidin, M., Sie, A.. Viraemia in patients with naturally acquired dengue infection. Bull. World Health Organ., (1981), 59, 623630. Google ScholarPubMed
J. E. Doedel, B. Oldeman. AUTO 07P - Continuation and bifurcation software for ordinary differential equations. Technical Report : Concordia University, Montreal, Canada, (2009). Retrieved from http://indy.cs.concordia.ca/auto/
Mackenzie, J. S., Gubler, D. J., Petersen, L. R.. Emerging flaviviruses : the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine Review, (2004), 12, S98S109. CrossRefGoogle Scholar
Aguiar, M., Kooi, B. W., Stollenwerk, N.. Epidemiology of Dengue Fever : A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions. Math. Model. Nat. Phenom., (2008), 4, 4870. CrossRefGoogle Scholar
Aguiar, M., Stollenwerk, N., Kooi, B. W.. Torus bifurcations, isolas and chaotic attractors in a simple dengue model with ADE and temporary cross immunity. International Journal of Computer Mathematics, (2009), 86, 18671877. CrossRefGoogle Scholar
M. Aguiar, S. Ballesteros, B. W. Kooi, N. Stollenwerk. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections : complex dynamics and its implications for data analysis. Accepted for publication in Journal of Theoretical Biology, (2011).
Guzmán, M. G. et al. Dengue : a continuing global threat. Nature Reviews Microbiology, (2010), 8, S7S16. CrossRefGoogle ScholarPubMed
Keeling, M. J., Ross, J. V.. On methods for studying stochastic disease dynamics. Journal of the Royal Society Interface, (2008), 5, 171181. CrossRefGoogle ScholarPubMed
Ferguson, N., Anderson, R., Gupta, S.. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA, (1999), 96, 79094. CrossRefGoogle ScholarPubMed
N. G. van Kampen. Stochastic Processes in Physics and Chemistry. (North-Holland, Amsterdam, 1992).
Stollenwerk, N., Jansen, V. A. A.. Evolution towards criticality in an epidemiological model for meningococcal disease. Physics Letters A, (2003b), 317, 8796. CrossRefGoogle Scholar
Stollenwerk, N., Maiden, M. C. J., Jansen, V. A. A., V.A.A. Diversity in pathogenicity can cause outbreaks of menigococcal disease. Proc. Natl. Acad. Sci. USA, (2004), 101, 1022910234. CrossRefGoogle Scholar
N. Stollenwerk, V. V. A. Jansen. Population biology and criticality (Imperial College Press, London, 2010).
Chareonsook, O. et al. Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiol. Infect., (1999), 122, 161166. CrossRefGoogle ScholarPubMed
Pediatric Dengue Vaccine Initiative. International Vaccine Institute (IVI). Global Burden of Dengue, (2011). Retrieved from http://www.pdvi.org/about_dengue/GBD.asp
Pers comm. : Francisco Lemos, Secretaria de Estado de Saúde de Minas Gerais, Brazil ; Sônia Diniz, Fundação Ezequiel Dias, Minas Gerais, Brazil and Scott Halstead, Pedriatic Dengue Vaccine Initiative, Maryland, USA.
United Nations Population Division World Urbanization Prospects : The 2009 Revision Population Database, (2011). Retrieved from http://www.un.org/esa/population/unpop.htm
Halstead, S. B. et al. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. V. Epidemiologic observations outside Bangkok. Am. J. Trop. Med. Hyg., (1969), 18, 102233. CrossRefGoogle ScholarPubMed
S. B. Halstead. Antibody-dependent Enhancement of Infection : A Mechanism for Indirect Virus Entry into Cells. Cellular Receptors for Animal Viruses, 28, Chapter 25, 493–516. (Cold Spring Harbor Laboratory Press, 1994).
Halstead, S. B.. Immune enhancement of viral infection. Progress in Allergy, (1982), 31, 301364. Google ScholarPubMed
Halstead, S. B.. Neutralization and antibody-dependent enhancement of dengue viruses. Advances in Virus Research, (2003), 60, 421467. CrossRefGoogle ScholarPubMed
Matheus, S. et al. Discrimination between Primary and Secondary Dengue Virus Infection by an Immunoglobulin G Aviditnoy Test Using a Single Acute-Phase Serum Sample. Journal of Clinical Microbiology, (2005), 43, 27932797. CrossRefGoogle ScholarPubMed
Dejnirattisai, W. et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science, (2010), 328, 745748. CrossRefGoogle ScholarPubMed
Wikipedia contributors. Wikipedia, The Free Encyclopedia. Provinces of Thailand, (2011). Retrieved from http://en.wikipedia.org/wiki/Provinces_of_Thailand
World Health Organization. Dengue and Dengue Hemorrhagic Fever, Fact sheet 117, (2009). Retrieved from http://www.who.int/mediacentre/factsheets/fs117/en/
Nagao, Y., Koelle, K.. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc. Natl. Acad. Sci, (2008), 105, 22382243. CrossRefGoogle ScholarPubMed