Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T06:54:59.360Z Has data issue: false hasContentIssue false

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

Published online by Cambridge University Press:  06 June 2012

Get access

Abstract

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adimurthi, , Mishra, S., Veerappa Gowda, G.-D.. Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients. J. Differential Equations, 241 (2007), No. 1, 131. CrossRefGoogle Scholar
G. Aguilar, L. Lévi, M. Madaune-Tort. Nonlinear multidimensional parabolic-hyperbolic equations. Proceedings of the 2006 International Conference in honor of Jacqueline Fleckinger, Electron. J. Differ. Equ. Conf., 16 (2007), 15–28.
A. Ambrosetti, A. Malchiodi. Nonlinear analysis and semilinear elliptic problems. Cambridge University Press, Cambridge, 2007.
Andreianov, B., Karlsen, K. H., Risebro, N. H.. A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal., 201 (2011), No. 1, 2786. CrossRefGoogle Scholar
Bardonnet, A., Bolliet, V., Belon, V.. Recruitment abundance estimation : Role of glass eel (anguilla anguilla l.) response to light. Journal of Experimental Marine Biology and Ecology, 321 (2005), No. 2, 181190. CrossRefGoogle Scholar
Bardos, C.. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d’approximation ; application à l’équation de transport. Ann. Sci. École Norm. Sup., 3 (1970), 185233. CrossRefGoogle Scholar
M. Bendahmane, K. H. Karlsen. Anisotropic doubly nonlinear degenerate parabolic equations. Proceedings of ENUMATH 2005 : Numerical mathematics and advanced applications, Springer, (2006), 381–386.
Berres, S., Bürger, R., Frid, H.. Neumann problems for quasi-linear parabolic systems modeling polydisperse suspensions. SIAM J. Math. Anal., 38 (2006), No. 2, 557573. CrossRefGoogle Scholar
Bolliet, V., Lambert, P., Rives, J., Bardonnet, A.. Rhythmic swimming activity in anguilla anguilla glass eels : Synchronisation to water current reversal under laboratory conditions. Journal of Experimental Marine Biology and Ecology, 344 (2007), No. 1, 5466. CrossRefGoogle Scholar
Carrillo, J.. Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), No. 4, 269361. CrossRefGoogle Scholar
Chen, G.-Q., Karlsen, K. H.. L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc., 358 (2006), No. 3, 937963. CrossRefGoogle Scholar
Chen, G.-Q., Perthame, B.. What is ... a kinetic solution for degenerate parabolic-hyperbolic equations ? Notices Amer. Math. Soc., 57 (2010), No. 6, 737739. Google Scholar
R. Dautray, J.-L. Lions. Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, 1988.
de Casamajor, M., Prouzet, P., Lazure, P.. Identification des flux de civelles (anguilla anguilla) à partir des relations d’allométrie en fonction des conditions hydrodynamiques de l’estuaire de l’Adour. Aquatic Living Resources, 13 (2001), No. 6, 411420. CrossRefGoogle Scholar
J. Donea, A. Huerta, J.-P. Ponthot, A. Rodríguez-Ferra. Arbitrary Lagrangian- Eulerian methods in Encyclopedia of computational mechanics, Vol. 1. John Wiley & Sons Ltd., Chichester, 2004.
Droniou, J.. Non-coercive linear elliptic problems. Potential Anal., 17 (2002), No. 2, 181203. CrossRefGoogle Scholar
G. Gagneux, M. Madaune-Tort. Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Springer-Verlag, Berlin, 1996.
Gastaldi, F., Quarteroni, A., Sacchi Landriani, G.. Coupling of two-dimensional hyperbolic and elliptic equations. Comput. Methods Appl. Mech. Engrg., 80 (1990), No. 1-3, 347354. CrossRefGoogle Scholar
Gastaldi, F., Gastaldi, L.. On a domain decomposition for the transport equation : theory and finite element approximation. IMA J. Numer. Anal., 14 (1994), No. 1, 111135. CrossRefGoogle Scholar
D. Gilbarg, N.-S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001.
Jimenez, J., Lévi, L.. A mathematical analysis for some class of hyperbolic-parabolic problems. Adv. Math. Sci. Appl., 20 (2010), No. 1, 5175. Google Scholar
Kružkov, S.-N.. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (1970), No. 123, 228255. Google Scholar
J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.
J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications I. Dunod, Paris, 1968.
M. Odunlami. "GlassEel2D“. A software to simulate glass eel behavior in estuaries, University of Pau, https://redmine.univ-pau.fr/projects/glasseel2D, 2011.
O. Pardo. Contribution à l’étude et à la modélisation d’un modèle de convection-diffusion dégénéré : application à l’étude du comportement migratoire des civelles dans l’estuaire de l’Adour. PhD thesis, Université de Pau, 2002.
P. Prouzet and EELIAD partners. Personal communications. IFREMER and http://www.eeliad.com/, 2009-2012.
Prouzet, P., Odunlami, M., Duquesne, E., Boussouar, A.. Analysis and visualization of the glass eel behavior ( anguilla anguilla) in the adour estuary and estimate of its upstream migration speed. Aquatic Living Resources, 22 (2009), 525534. CrossRefGoogle Scholar
J.-E. Roberts, J.-M. Thomas. Mixed and hybrid methods. In Handbook of numerical analysis II. North-Holland, Amsterdam, 1991.
Vallet, G., Wittbold, P.. On a stochastic first-order hyperbolic equation in a bounded domain. Infinite Dimensional Analysis QuantumProbability, 12 (2009), No. 4, 139. Google Scholar