Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:30:08.212Z Has data issue: false hasContentIssue false

Mathematical Modelling in Theoretical Ecology: Introduction to the Special Issue

Published online by Cambridge University Press:  28 November 2013

A. Morozov*
Affiliation:
Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK Shirshov Institute of Oceanology, Moscow, 117997, Russia
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auger, P., Bravo de la Parra, R., Poggiale, J.-C., Sánchez, E., Sanz, L.. Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev., 5 (2008), 79105. CrossRefGoogle Scholar
Bravo de la Parra, R., Marvá, M., Sánchez, E., Sanz, L.. Reduction of discrete dynamical systems with applications to dynamics population models. Math. Mod. Nat. Phen., 8 (2013), no. 6, 107129. CrossRefGoogle Scholar
F. Courchamp, L. Berec, J. Gascoigne. Allee effects in ecology and conservation. Oxford University Press, Oxford, 2008.
Gauduchon, T., Strohm, S., Tyson, R.C.. The effect of habitat fragmentation on cyclic populations with edge behaviour. Math. Mod. Nat. Phen., 8 (2013), no. 6, 4563. CrossRefGoogle Scholar
González-Olivares, E. and Rojas-Palma, A.. Allee effect in Gause type predator-prey models: Existence of multiple attractors, limit cycles and separatrix curves. A brief review. Math. Mod. Nat. Phen., 8 (2013), no. 6, 143164. CrossRefGoogle Scholar
Grunbaum, D.. The logic of ecological patchiness. Interface Focus, 2 (2012), 150155. CrossRefGoogle ScholarPubMed
Hallegrae, G. M.. A review of harmful algae blooms and the apparent global increase. Phycologia, 32, (1993), 7999. CrossRefGoogle Scholar
Hastings, A., Petrovskii, S., Morozov, A.. Spatial ecology across scales. Biol. Lett., 7 (2011), 163165 CrossRefGoogle Scholar
S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995.
Kooi, B. W., Dutta, P.S.. Feudel, U.. Resource competition: A bifurcation theory approach. Math. Mod. Nat. Phen., 8 (2013), no. 6, 165185. CrossRefGoogle Scholar
Lewis, N. D., Breckels, M. N., Archer, S. D., Morozov, A. Yu., Pitchford, J. W., Steinke, M., Codling, E. A.. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry, 110 (2012), 303313. CrossRefGoogle Scholar
Lewis, N. D., Morozov, A. Yu., Breckels, M. N., Steinke, M., Codling, E. A.. Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model. Math. Mod. Nat. Phen., 8 (2013), no. 6, 2544. CrossRefGoogle Scholar
A. Lotka. Elements of physical biology. Baltimore: Williams & Wilkins, 1925.
Ly, S., Mansala, F., Baldé, M., Nguyen-Huub, T., Auger, P.. A model of a multi-site fishery with variable price: From over-exploitation to sustainable fisheries. Math. Mod. Nat. Phen., 8 (2013), no. 6, 130142. CrossRefGoogle Scholar
H. Malchow, S.V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations. Chapman & Hall / CRC Press, 2008.
T.R. Malthus. An essay on the principle of population. London, UK: J. Johnson, 1798.
Morozov, A.Yu., Poggiale, J.C.. From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives. Ecol. Compl., 10 (2012), 111. CrossRefGoogle Scholar
Parrish, J. K., Viscido, S. V., Grunbaum, D.. Self-organized ?sh schools: An examination of emergent properties. Bioll. Bull., 202 (2002), 296305. CrossRefGoogle Scholar
A. Quetelet. Sur l’homme et le développement de ses faculté. Paris, France: Bachelier, 1835.
Eftimie, R.. The effect of different communication mechanisms on the movement and structure of self-organised aggregations. Math. Mod. Nat. Phen., 8 (2013), no. 6, 524. CrossRefGoogle Scholar
Reynolds, C. W., Flocks, herds and schools: A distributed behavioral model, Comp. Graph., 21 (1987), 2534. CrossRefGoogle Scholar
Rodrigues, L. A. D., Mistro, D. C.. Biological invasions in heterogeneous environments: the coupled map lattice framework. Math. Mod. Nat. Phen., 8 (2013), no. 6, 96106. CrossRefGoogle Scholar
Semplice, M., Venturino, E.. Travelling waves in plankton dynamics. Math. Mod. Nat. Phen., 8 (2013), no. 6, 6479. CrossRefGoogle Scholar
Strohm, S., Tyson, R.. The effect of habitat fragmentation on cyclic population dynamics: A numerical study. Bull. Math. Biol., 71 (2009), 13231348. CrossRefGoogle ScholarPubMed
D. Tilman. Resource competition and community structure. Princeton University Press, Princeton, 1982.
Tyutyunov, Yu.V., Kovalev, O.V., Titova, L.I.. Spatial demogenetic model for studying phenomena observed upon introduction of the ragweed leaf beetle in the South of Russia. Math. Mod. Nat. Phen., 8 (2013), no. 6, 8095. CrossRefGoogle Scholar
V. Volterra. Variations and fluctuations of the number of individuals in animal species living together, in Animal ecology (ed. R. N. Chapman), pp. 409–448. New York, NY: McGraw Hill, 1931.
Verhulst, P.F.. Notice sur la loi que la population suit dans son accroissement. Correspondance Mathmatique Physique Publié A 10 (1838), 113121. Google Scholar