Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T04:53:56.898Z Has data issue: false hasContentIssue false

Local Parameterization and the Asymptotic NumericalMethod

Published online by Cambridge University Press:  26 August 2010

Get access

Abstract

The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation oftruncated vectorial series, for path following problems [2]. In this paper, we present anddiscuss some techniques to define local parameterization [4, 6, 7] in the ANM. We givesome numerical comparisons of pseudo arc-length parameterization and localparameterization on non-linear elastic shells problems

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cochelin, B.. A path-following technique via an asymptotic-numerical method . Computers Structures, 53 (1994), No. 5, 11811192.CrossRefGoogle Scholar
B. Cochelin, N. Damil, M. Potier-Ferry. Méthode asymptotique numérique. Hermès-Lavoisier, Paris, 2007.
Elhage-Hussein, A., Potier-Ferry, M., Damil, N.. A numerical continuation method based on Padé approximants . Int.J. Solids and Structures, 37 (2000), 69817001.CrossRefGoogle Scholar
Gervais, J. J., Sadiky, H.. A new steplength control for continuation with the asymptotic numerical method . IAM, J. Nomer. Anal., 22 (2000), No. 2, 207229.CrossRefGoogle Scholar
H. Mottaqui, B. Braikat, N. Damil.Influence de la paramétrisation dans la méthode asymptotique numérique : Application au calcul de structures. Premier congrès Tunisien de mécanique, (2008), 173–174.
Rheinboldt, W. C., Burkadt, J. V.. A Localy parameterized continuation . Acm Transaction on Mathmatical Software, 9 (1983), No. 2, 215235.CrossRefGoogle Scholar
R. Seydel. World of bifurcation, online collection and tutorials of nonlinear phenomena, (www.bifurcation.de) (1999).