Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:48:18.909Z Has data issue: false hasContentIssue false

Integrated Design of an Active Flow Control System Using aTime-Dependent Adjoint Method

Published online by Cambridge University Press:  16 May 2011

Get access

Abstract

An exploratory study is performed to investigate the use of a time-dependent discreteadjoint methodology for design optimization of a high-lift wing configuration augmentedwith an active flow control system. The location and blowing parameters associated with aseries of jet actuation orifices are used as design variables. In addition, a geometricparameterization scheme is developed to provide a compact set of design variablesdescribing the wing shape. The scaling of the implementation is studied using severalthousand processors and it is found that asynchronous file operations can greatly improvethe overall performance of the approach in such massively parallel environments. Threedesign examples are presented which seek to maximize the mean value of the liftcoefficient for the coupled system, and results demonstrate improvements as high as 27%relative to the lift obtained with non-optimized actuation. This lift gain is more thanthree times the incremental lift provided by the non-optimized actuation.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Anderson, W.K., Bonhaus, D.L.. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Comp. and Fluids, 23 (1994), No. 1, 1-21. CrossRefGoogle Scholar
Anderson, W.K., Venkatakrishnan, V.. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Comp. and Fluids, 28 (1999), No. 4, 443-480. CrossRefGoogle Scholar
Anderson, W.K., Bonhaus, D.L.. Airfoil design on unstructured grids for turbulent flows. AIAA J., 37 (1999), No. 2, 185-191. CrossRefGoogle Scholar
Baysal, O., Koklu, M., Erbas, N.. Design optimization of micro synthetic jet actuator for flow separation control. J. Fluids Eng., 128 (2006), No. 5, 1053-1062. CrossRefGoogle Scholar
Bewley, T.R.. Flow control: new challenges for a new renaissance. Prog. in Aero. Sci., 37 (2001), No. 1, 21-58. CrossRefGoogle Scholar
R.T. Biedron, J.L. Thomas. Recent enhancements to the FUN3D Flow solver for moving mesh applications. AIAA 2009-1360 (2009).
Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.. Toward exascale resilience. Int. J. High Perf. Comp. App., 23 (2009), No. 4, 374-388. CrossRefGoogle Scholar
S. Choi, M. Potsdam, K. Lee, G. Iaccarino, J.J. Alonso. Helicopter rotor design using a time-spectral and adjoint-based method. AIAA 2008-5810 (2008).
Collis, S.S., Joslin, R.D., Seifert, A., Theofilis, V.. Issues in active flow control: theory, control, simulation, and experiment. Prog. in Aero. Sci., 40 (2004), No. 4, 237-289. CrossRefGoogle Scholar
Duvigneau, R., Visonneau, M.. Optimization of a synthetic jet actuator for aerodynamic stall control. Comp. and Fluids, 35 (2006), No. 6, 624-638. CrossRefGoogle Scholar
Greenblatt, D., Wygnanski, I.J.. The control of flow separation by periodic excitation. Prog. in Aero. Sci., 36 (2000), No. 7, 487-545. CrossRefGoogle Scholar
Han, Z.-H., Zhang, K.-S., Song, W.-P., Qiao, Z.-D.. Optimization of active flow control over an airfoil using a surrogate-management framework. AIAA J. Aircraft, 47 (2010), No. 2, 603-612. CrossRefGoogle Scholar
http://fun3d.larc.nasa.gov, last accessed December 1, 2010.
http://wiki.lustre.org/index.php/Main_Page, last accessed December 1, 2010.
Huang, L., Huang, G., LeBeau, R.. Optimization of airfoil flow control using a genetic algorithm with diversity control. AIAA J. Aircraft, 44 (2007), No. 4, 1337-1349. CrossRefGoogle Scholar
W.T. Jones. GridEx – an integrated grid generation package for CFD. AIAA 2003-4129 (2003).
L. Kaufman, D. Gay. PORT Library: optimization and mathematical programming – user’s manual. Bell Laboratories, 1997.
Lanser, W.R., Meyn, L.A.. Forebody flow control on a full-scale F/A-18 aircraft. AIAA J. Aircraft, 31 (1994), No. 6, 1365-1371. CrossRefGoogle Scholar
C. Leclerc, E. Levallois, P. Gillieron, A. Kourta. Aerodynamic drag reduction by synthetic jet: a 2D numerical study around a simplified car. AIAA 2006-3337 (2006).
E.M. Lee-Rausch, V.N. Vatsa, C.L. Rumsey. Computational analysis of dual radius circulation control airfoils. AIAA 2006-3012 (2006).
E.M. Lee-Rausch, D.P. Hammond, E.J. Nielsen, S.Z. Pirzadeh, C.L. Rumsey. Application of the FUN3D unstructured-grid Navier-Stokes solver to the 4th AIAA Drag Prediction Workshop cases. AIAA 2010-4551 (2010).
J.N. Lyness. Numerical algorithms based on the theory of complex variables. Proc. ACM 22nd Nat. Conf., Thomas Book Co., Washington, D.C. (1967), 124-134.
D.J. Mavriplis. Solution of the unsteady discrete adjoint for three- dimensional problems on dynamically deforming unstructured meshes. AIAA 2008-727 (2008).
Meunier, M.. Simulation and optimization of flow control strategies for novel high-lift configurations. AIAA J., 47 (2009), No. 5, 1145-1157. CrossRefGoogle Scholar
Muldoon, F.. Control of a Simplified Unsteady film-cooling flow using gradient-based optimization. AIAA J., 46 (2008), No. 10, 2443-2458. CrossRefGoogle Scholar
S. Nadarajah, A. Jameson. Optimal control of unsteady flows using time accurate and non-linear frequency domain methods. AIAA 2002-5436 (2002).
Newman, J.C. III, Taylor, A.C. III, Barnwell, R.W., Newman, P.A., Hou, G.J.-W.. Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. AIAA J. Aircraft, 36 (1999), No. 1, 87-96. CrossRefGoogle Scholar
Nielsen, E.J., Diskin, B., Yamaleev, N.K.. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids. AIAA J., 48 (2010), No. 6, 1195-1206. CrossRefGoogle Scholar
E.J. Nielsen. Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation. Ph.D. Dissertation, Dept. of Aero. and Ocean Eng., Virg. Poly. Inst. and St. Univ. (1998).
Nielsen, E.J., Anderson, W.K.. Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J., 40 (2002), No. 6, 1155-1163. CrossRefGoogle Scholar
Nielsen, E.J., Anderson, W.K.. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA J., 37 (1999), No. 11, 1411-1419. CrossRefGoogle Scholar
Nielsen, E.J., Lu, J., Park, M.A., Darmofal, D.L.. An Implicit, exact dual adjoint solution method for turbulent flows on unstructured grids. Comp. and Fluids, 33 (2004), No. 9, 1131-1155. CrossRefGoogle Scholar
Nielsen, E.J., Kleb, W.L.. Efficient construction of discrete adjoint operators on unstructured grids by using complex variables. AIAA J., 44 (2006), No. 4, 827-836. CrossRefGoogle Scholar
Nielsen, E.J., Park, M.A.. Using an adjoint approach to eliminate mesh sensitivities in computational design. AIAA J., 44 (2006), No. 5, 948-953. CrossRefGoogle Scholar
M. Nyukhtikov, N. Smelova, B.E. Mitchell, D.G. Holmes. Optimized dual-time stepping technique for time-accurate Navier-Stokes calculation. Proceedings of the 10th Int. Sym. on Unst. Aero., Aeroac., and Aeroelas. of Turbomach. (2003).
O.J. Ohanian III, E.D. Karni, W.K. Londenberg, P.A. Gelhausen. Ducted-fan force and moment control via steady and synthetic jets. AIAA 2009-3622 (2009).
Peter, J.E.V., Dwight, R.P.. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches. Comp. and Fluids, 39 (2010), No. 3, 373-391. CrossRefGoogle Scholar
L. Piegl, W. Tiller. The NURBS book (2nd ed.). Springer-Verlag New York, New York, 1997.
Pirzadeh, S.. Three-dimensional unstructured viscous grids by the advancing front method. AIAA J., 34 (1996), No. 1, 43-49. CrossRefGoogle Scholar
Roe, P.L.. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys., 43 (1981), No. 2, 357-372. CrossRefGoogle Scholar
J.L. Rogers. A parallel approach to optimum actuator selection with a genetic algorithm. AIAA 2000-4484 (2000).
Rullan, J.M., Vlachos, P.P., Telionis, D.P., Zeiger, M.D.. Post-stall flow control of sharp-edged wings via unsteady blowing. AIAA J. Aircraft, 43 (2006), No. 6, 1738-1746. CrossRefGoogle Scholar
M.P. Rumpfkeil, D.W. Zingg. A general framework for the optimal control of unsteady flows with applications. AIAA 2007-1128 (2007).
Saad, Y., Schultz, M.H.. GMRES: A generalized minimal residual algorithm for solving Nonsymmetric linear systems. SIAM J. Sci. and Stat. Comp., 7 (1986), No. 3, 856-869. CrossRefGoogle Scholar
J.A. Samareh. A Novel shape parameterization approach. NASA TM-1999-209116 (1999).
J.A. Samareh. Aerodynamic shape optimization based on free-form deformation. AIAA 2004-4630 (2004).
Seifert, A., David, S., Fono, I., Stalnov, O., Dayan, I.. Roll control via active flow control: From concept to flight. AIAA J. Aircraft, 47 (2010), No. 3, 864-874. CrossRefGoogle Scholar
Shmilovich, A., Yadlin, Y.. Active flow control for practical high-lift systems. AIAA J. Aircraft, 46 (2009), No. 4, 1354-1364. CrossRefGoogle Scholar
Spalart, P.R., Allmaras, S.R.. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1 (1994), 5-21. Google Scholar
Stanewsky, E.. Adaptive wing and flow control technology. Prog. in Aero. Sci., 37 (2001), No. 7, 583-667. CrossRefGoogle Scholar
M. Tadjouddine, S.A. Forth, N. Qin. Automatic differentiation of a time-dependent CFD solver for optimisation of a synthetic jet. Presented at the Int. Conf. of Num. Anal. and App. Math., Rhodes, Greece (2005).
V.N. Vatsa, M.H. Carpenter, D.P. Lockard. Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications. AIAA 2010-0122 (2010).
Yamaleev, N., Diskin, B., Nielsen, E.. Local-in-time adjoint-based method for design optimization of unsteady flows. J. Comp. Phys., 229 (2010), No. 14, 5394-5407. CrossRefGoogle Scholar