Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:27:48.318Z Has data issue: false hasContentIssue false

Application of Hybrid Models to Blood Cell Production in theBone Marrow

Published online by Cambridge University Press:  15 June 2011

N. Bessonov
Affiliation:
Institute of Mechanical Engineering Problems, 199178 Saint Petersburg, Russia Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France
F. Crauste
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France INRIA Rhône-Alpes, Team-project “Dracula”
S. Fischer
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France INRIA Rhône-Alpes, Team-project “Dracula”
P. Kurbatova
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France INRIA Rhône-Alpes, Team-project “Dracula”
V. Volpert*
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France INRIA Rhône-Alpes, Team-project “Dracula”
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A hybrid model of red blood cell production, where cells are considered as discreteobjects while intra-cellular proteins and extra-cellular biochemical substances aredescribed with continuous models, is proposed. Spatial organization and regulation of redblood cell production (erythropoiesis) are investigated. Normal erythropoiesis issimulated in two dimensions, and the influence on the output of the model of someparameters involved in cell fate (differentiation, self-renewal, and death by apoptosis)is studied.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. R.A. Anderson.A hybrid multiscale model of solid tumour growth and invasion: Evolution and the microenvironment. in Single-Cell-Based Models in Biology and Medicine (Ed. A.R.A. Anderson, M.A.J. Chaplain and K.A. Rejniak), Series Mathematics and Biosciences in Interaction, Springer, Birkhauser Basel, 2007, 3–28.
A.R.A. Anderson, M. Chaplain, K.A. Rejniak. Single cell based models in biology and medicine, Mathematics and Biosciences in Interaction. Springer, Birkhauser Basel, 2007.
A., R. A. Anderson, K.A., Rejniak, P., Gerlee, V., Quaranta. Modelling of cancer growth, evolution and invasion: bridging scales and models. Math. Model. Nat. Phenom., 2(3) (2007), 129. Google Scholar
Bélair, J., Mackey, M.C., Mahaffy, J.M.. Age-structured and two delay models for erythropoiesis. Math. Biosci., 128 (1995), 317346. CrossRefGoogle ScholarPubMed
N., Bessonov, L., Pujo-Menjouet, V., Volpert. Cell modelling of hematopoiesis. Math. Model. Nat. Phenom., 1 (2006), No. 2, 81103. Google Scholar
Bessonov, N., Demin, I., Pujo-Menjouet, L., Volpert, V.. A multi-agent model describing self-renewal or differentiation effect of blood cell population. Mathematical and Computer Modelling, 49 (2009), 21162127. CrossRefGoogle Scholar
N., Bessonov, P., Kurbatova, V., Volpert. Particle dynamics modelling of cell populations. Prooceedings of the conference JANO, Mohamadia 2008, Math. Model. Nat. Phenom., 5 (2010), No. 7, 4247.
N. Bessonov, P. Kurbatova, V. Volpert. Dynamics of growing cell populations. CRM, preprint num. 931 for Mathematical Biology, February 2010.
J.A. Chasis, N. Mohandas. Erythroblastic islands: niches for erythropoiesis. Blood, 112 (2008), pp. 470-478.
F., Crauste, I., Demin, O., Gandrillon, V., Volpert. Mathematical study of feedback control roles and relevance in stress erythropoiesis. J. Theo. Biol., 263 (2010), 303316. Google Scholar
Crauste, F., Pujo-Menjouet, L., Génieys, S., Molina, C., Gandrillon, O.. Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis. J. Theor. Biol., 250 (2008), 322338. CrossRefGoogle Scholar
I. Demin, F. Crauste, O. Gandrillon, V. Volpert. A multi-scale model of erythropoiesis, J. Biol. Dyn. 4 (2010), pp. 59–70.
D. Drasdo.Center-based single-cell models: An approach to multi-cellular organization based on a conceptual analogy to colloidal particles. In: Single-Cell-Based Models in Biology and Medicine (Ed. A.R.A. Anderson, M.A.J. Chaplain and K.A. Rejniak), Series Mathematics and Biosciences in Interaction, Springer, Birkhauser Basel, 2007, 171-196.
Gandrillon, O., Schmidt, U., Beug, H., Samarut, J.. TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J., 18 (1999), 27642781. CrossRefGoogle ScholarPubMed
M. Karttunen, I. Vattulainen, A.Lukkarinen. A novel methods in soft matter simulations, Springer, Berlin, 2004.
Koury, M.J., Bondurant, M.C.. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science, 248 (1990), 378381. CrossRefGoogle Scholar
Rubiolo, C., Piazzolla, D., Meissl, K., Beug, H., Huber, J.C., Kolbus, A., Baccarini, M.. A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood, 108 (2006), 152159. CrossRefGoogle ScholarPubMed