Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T02:23:08.089Z Has data issue: false hasContentIssue false

Tridiagonal Substitution Hamiltonians

Published online by Cambridge University Press:  17 July 2014

M. Mei*
Affiliation:
Mathematics & Computer Science, Denison University, Granville, OH 43023-0810
W. Yessen*
Affiliation:
Mathematics, Rice University, 1600 Main St. MS-136, Houston, TX 77005
*
Supported by the Michele T. Myers PD Account through Denison University. Part of thework presented herein was supported by DMS-0901627 (PI: A. Gorodetski)
Get access

Abstract

We consider a family of discrete Jacobi operators on the one-dimensional integer latticewith Laplacian and potential terms modulated by a primitive invertible two-lettersubstitution. We investigate the spectrum and the spectral type, the fractal structure andfractal dimensions of the spectrum, exact dimensionality of the integrated density ofstates, and the gap structure. We present a review of previous results, some applications,and open problems. Our investigation is based largely on the dynamics of trace maps. Thiswork is an extension of similar results on Schrödinger operators, although some of theresults that we obtain differ qualitatively and quantitatively from those for theSchrödinger operators. The nontrivialities of this extension lie in the dynamics of theassociated trace map as one attempts to extend the trace map formalism from theSchrödinger cocycle to the Jacobi one. In fact, the Jacobi operators considered here are,in a sense, a test item, as many other models can be attacked via the same techniques, andwe present an extensive discussion on this.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astels, S.. Cantor sets and numbers with restricted partial quotients. Trans. Amer. Math. Soc., 352 (2000), 133170. CrossRefGoogle Scholar
Avila, A., Jitomirskaya, S.. The Ten Martini Problem, Annal. Math., 170 (2009), 303342. CrossRefGoogle Scholar
Avron, J., Mouche, V., Simon, P. H. M., B.. On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys., 132 (1990), 103118. CrossRefGoogle Scholar
Beckus, S., Pogorzelski, F.. Spectrum of lebesgue measure zero for jacobi matrices of quasicrystals. Mathematical Physics, Analysis and Geometry, 16 (2013), 289308. CrossRefGoogle Scholar
J. Bellissard. Spectral properties of Schrödinger’s operator with a Thue-Morse potential. Number Theory and Physics (Les Houches, 1989), 140–150, Springer Proc. Phys., 47, Springer, Berlin 1990.
Bellissard, J., Bovier, A., Ghez, J.-M.. Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135 (1991), 379399. CrossRefGoogle Scholar
Bellissard, J., Bovier, A., Ghez, J.-M.. Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys., 4 (1992), 137. CrossRefGoogle Scholar
Bellissard, J., Iochum, B., Scoppola, E., Testard, D.. Spectral properties of one dimensional quasi-crystals. Commun. Math. Phys., 125 (1989), 527543. CrossRefGoogle Scholar
Brown, T. C.. A characterization of the quadratic irrationals. Canad. Math. Bull., 34 (1991), no. 1, 3641. CrossRefGoogle Scholar
Cantat, S.. Bers and Hénon, Painlevé and Schrödinger. Duke Math. J., 149 (2009), 411460. CrossRefGoogle Scholar
R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Boston: Birkhäuser, 1990.
Casdagli, M.. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys., 107 (1986), 295318. CrossRefGoogle Scholar
Choi, M.-D., Elliottt, G. A., Yui, N.. Gauss polynomials and the rotation algebra. Invent. Math., 99 (1990), 225246. CrossRefGoogle Scholar
Crisp, D., Moran, W., Pollington, A., Shiue, P.. Substitution invariant cutting sequences. J. Théor. Nombres Bordeaux, 5 (1993), no. 1, 123137.CrossRefGoogle Scholar
H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon. Schrödinger operators. Books and monographs in physics. Berlin, Heidelberg, New York: Springer, 1987.
J. M. Dahl. The spectrum of the off-diagonal Fibonacci operator. Ph.D. thesis, Rice University, 2010-2011.
Damanik, D.. Substitution Hamiltonians with Bounded Trace Map Orbits. J. Math. Anal. App., 249 (2000), 393411. CrossRefGoogle Scholar
Damanik, D.. Uniform singular continuous spectrum for the period doubling Hamiltonian. Annal. Henri Poincaré, 20 (2001), 101108. CrossRefGoogle Scholar
D. Damanik. Strictly ergodic subshifts and associated operators. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007.
D. Damanik, M. Embree, A. Gorodetski. Spectral properties of the Schrödinger operators arising in the study of quasicrystals. (preprint) arXiv:1210.5753.
Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.. The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys., 280 (2008), 499516. CrossRefGoogle Scholar
Damanik, D., Gorodetski, A.. Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity, 22 (2009), 123143. CrossRefGoogle Scholar
Damanik, D., Gorodetski, A.. Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys., 305 (2011), 221277. CrossRefGoogle Scholar
Damanik, D., Gorodetski, A.. The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal., 22 (2012), 976989. CrossRefGoogle Scholar
D. Damanik, A. Gorodetski, B. Solomyak. Absolutely continuous convolutions of singular measures and an application to the square fibonacci hamiltonian. preprint (arXiv:1306.4284).
Damanik, D., Munger, P., Yessen, W. N.. Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure. J. Approx. Theory, 173 (2013), 5688. CrossRefGoogle Scholar
Damanik, D., Munger, P., Yessen, W. N.. Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications. J. Stat. Phys., 153 (2013), 339362. CrossRefGoogle Scholar
Damanik, D., Lenz, D.. Uniform spectral properties of one-dimensional quasicrystals. IV. Quasi-Sturmian potentials. J. Anal. Math., 90 (2003), 115139. CrossRefGoogle Scholar
C. R. de Oliveira. Intermediate spectral theory and quantum dynamics. Progress in Mathematical Physics, vol. 54, Birkhäuser Verlag, Basel, 2009.
B. Farb, D. Margalit. A primer on mapping class groups. Princeton University Press, Princeton, NJ., 2012.
A. Fathi, F. Laudenbach, V. Poénaru. Travaux de Thurston sur les surfaces. Asterisque, 66, 67 (1979), (Translation by Kim, D. and Margalit, D., Thurston’s work on surfaces, Princeton University Press, 2012).
N. P. Fogg. Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
Gottschalk, W. H.. Substitution minimal sets. Trans. Amer. Math. Soc., 109 (1963), 467491. CrossRefGoogle Scholar
B. C. Hall. Quantum theory for mathematicians. Graduate Texts in Mathematics, vol. 267, Springer, New York, 2013.
Hamza, E., Sims, R., Stolz, G.. Dynamical localization in disordered quantum spin systems. Comm. Math. Phys., 315 (2012), 215239. CrossRefGoogle Scholar
Harper, P. G.. Single bond motion of conducting electros in a uniform magnetic field. Proc. Phys. Soc. A, 68 (1955), 874878. CrossRefGoogle Scholar
B. Hasselblatt. Handbook of Dynamical Systems: Hyperbolic Dynamical Systems. vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.
B. Hasselblatt, A. Katok. Handbook of Dynamical Systems: Principal Structures. vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.
B. Hasselblatt, Ya. Pesin. Partially hyperbolic dynamical systems. Handbook of dynamical systems, 1B (2006), 1–55, Elsevier B. V., Amsterdam (Reviewer: C. A. Morales).
Hirsch, M. W., Pugh, C. C.. Stable Manifolds and Hyperbolic Sets, Proc. Symp. Pure Math., 14 (1968), 133163. CrossRefGoogle Scholar
Hof, A.. Some remarks on discrete aperiodic Schrödinger operators. J. Stat. Phys., 72 (1993), 13531374. CrossRefGoogle Scholar
A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, New York, NY, 1995.
Kohmoto, M., Kadanoff, L. P., Tang, C.. Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett., 50 (1983), 18701872. CrossRefGoogle Scholar
Kotani, S.. Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys., 1 (1989), 129133. CrossRefGoogle Scholar
Lenz, D.. Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Comm. Math. Phys., 227 (2002), 119130. CrossRefGoogle Scholar
Lenz, D., Stollmann, P.. An ergodic theorem for Delone dynamical systems and exitense of the integrated density of states. J. Anal. Math., 97 (2005), 124. CrossRefGoogle Scholar
Lieb, E., Schultz, T., Mattis, D.. Two soluble models of an antiferromagnetic chain. Ann. Phys., 16 (1961), 407466. CrossRefGoogle Scholar
Liu, Q.-H., Peyrière, J., Wen, Z.-Y.. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. C. R. Math. Acad. Sci. Paris, 345 (2007), 667672. CrossRefGoogle Scholar
Liu, Q.-H., Tan, B., Wen, Z.-X., Wu, J.. Measure zero spectrum of a class of Schrödinger operators. J. Statist. Phys., 106 (2002), 681691. CrossRefGoogle Scholar
Luttinger, J. M.. The effect of a magnetic field on electros in a periodic potential. Phys. Rev., 94 (1951), 814817. CrossRefGoogle Scholar
Mañé, R.. The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Boletim da Sociedade Brasileira de Matemática, 20 (1990), 124. CrossRefGoogle Scholar
M. Mei. Spectral properties of discrete Schrödinger operators with primitive invertible substitution potentials. preprint (arXiv:1311.0954) (2013).
Morse, M., Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math., 62 (1940), 142. CrossRefGoogle Scholar
S. Newhouse. Nondensity of Axiom A on S 2. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 191–202, Amer. Math. Soc., Providence, RI, 1970.
Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. J., Siggia, E. D.. One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett., 50 (1983), 18731876. CrossRefGoogle Scholar
Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc., 58 (1952), 116136. CrossRefGoogle Scholar
J. Palis, F. Takens. Hyperbolicity and Sensetive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge, 1993.
L. Pastur, A. Figotin. Spectra of random and almost-periodic operators. Grundlehren der mathematischen Wissenschaften, Vol. 297, Springer, 1992.
Penner, R. C.. A construction of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc., 310 (1988), 179197. CrossRefGoogle Scholar
Ya. Pesin. Dimension Theory in Dynamical Systems. Chicago Lect. Math. Series, 1997.
Ya. Pesin. Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lect. Adv. Math., European Mathematical Society, 2004.
M. Pollicott. Analyticity of dimensions for hyperbolic surface diffeomorphisms. preprint.
Pugh, C., Shub, M., Wilkinson, A.. Hölder foliations. Duke Math. J., 86 (1997), 517546. CrossRefGoogle Scholar
L. Raymond. A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. preprint (1997).
Remling, C.. The absolutely continuous spectrum of Jacobi matrices. Ann. Math., 174 (2011), 125171. CrossRefGoogle Scholar
Roberts, J. A. G.. Escaping orbits in trace maps. Physica A: Stat. Mech. App., 228 (1996), 295325. CrossRefGoogle Scholar
Schechtman, D., Blech, I., Gratias, J. W., Cahn, D.. Meallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53 (1984), 19511953. CrossRefGoogle Scholar
Simon, B.. Equilibrium measures and capacities in spectral theory. Inverse problems and imaging, 1 (2007), 713772. CrossRefGoogle Scholar
Smale, S.. Differentiable Dynamical Systems. Bull. Amer. Math. Soc., 73 (1967), 747817. CrossRefGoogle Scholar
Sütő, A.. The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys., 111 (1987), 409415. CrossRefGoogle Scholar
L. A. Takhtajan. Quantum mechanics for mathematicians, Graduate Studies in Mathematics, vol. 95, American Mathematical Society, Providence, RI, 2008.
Tan, B., Wen, Z.-X., Zhang, Y.. Invertible substitutions on a three-letter alphabet. C. R. Math. Acad. Sci. Paris, 336 (2003), 111116. CrossRefGoogle Scholar
G. Teschl. Jacobi operators and completely integrable nonlinear lattices. AMS mathematical surveys and monographs, vol. 72, American Mathematical Society, Providence, RI.
G. Teschl. Mathematical methods in quantum mechanics. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009, With applications to Schrödinger operators.
Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc., 19 (1988), 417431. CrossRefGoogle Scholar
M. Toda. Theory of Nonlinear Lattices. Solid-State Sciences 20, Berlin-Heidelberg-New York, Springer-Verlag, 1981.
Z. Wen, Y. Zhang. Some remarks on invertible substitutions on three letter alphabet. Chinese Sci. Bull., 44 (1999).
Yessen, W. N.. Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr. Theory, 3 (2013), 101128. CrossRefGoogle Scholar
Yessen, W. N.. On the energy spectrum of 1d quantum ising quasicrystal. Annal. H. Poincaré, 15 (2014), 419467. CrossRefGoogle Scholar
Yessen, W. N.. Properties of 1D Classical and Quantum Ising Models: Rigorous Results. Ann. Henri Poincaré, 15 (2014), 793828. CrossRefGoogle Scholar