Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T15:34:01.419Z Has data issue: false hasContentIssue false

On Nonlinear Dynamics of Predator-Prey Modelswith Discrete Delay

Published online by Cambridge University Press:  26 March 2009

S. Ruan*
Affiliation:
Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
Get access

Abstract

In this survey, we briefly review some of our recent studies on predator-preymodels with discrete delay. We first study the distribution of zeros of a seconddegree transcendental polynomial. Then we apply the general results on thedistribution of zeros of the second degree transcendental polynomial to variouspredator-prey models with discrete delay, including Kolmogorov-typepredator-prey models, generalized Gause-type predator-prey models withharvesting, etc. Bogdanov-Takens bifurcations in delayed predator-prey modelswith nonmonotone functional response and in delayed predator-prey model withpredator harvesting are also introduced.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J. F.. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng., 10 (1968), 707-723. CrossRef
Arditi, R., Abillon, J.-M., Da Silva, J. V.. The effect of a time-delay in a predator-prey model. Math. Biosci., 33 (1977), 107-120. CrossRef
Baptistini, M., Táboas, P.. On the stability of some exponential polynomials. Math. Anal. Appl., 205 (1997), 259-272. CrossRef
Bartlett, M. S.. On theoretical models for competitive and predatory biological systems. Biometrika, 44 (1957), 27-42. CrossRef
Beddington, J. R., Cooke, J. G.. Harvesting from a prey-predator complex. Ecol. Modelling, 14 (1982), 155-177. CrossRef
R. Bellman, K. L. Cooke. Differential-difference equations. Academic Press, New York, 1963.
Beretta, E., Kuang, Y.. Convergence results in a well-known delayed predator-prey system. J. Math. Anal. Appl., 204 (1996), 840-853. CrossRef
Beretta, E., Kuang, Y.. Global analysis in some delayed ratio-dependent predator-prey systems. Nonlinear Anal., 32 (1998), 381-408. CrossRef
E. Beretta, Y. Kuang. Geometric stability switch crteria in delay differential equations with delay dependent parameters. SIAM J. Math. Anal., 33(2002), 1144-1165.
Boes, F. G.. Stability criteria for second-order dynamical systems involving several time delays. SIAM J. Math. Anal., 26 (1995), 1306-1330. CrossRef
Brauer, F.. Stability of some population models with delay. Math. Biosci., 33 (1977), 345-358. CrossRef
Brauer, F.. Characteristic return times for harvested population models with time lag. Math. Biosci., 45 (1979), 295-311. CrossRef
Brauer, F.. Absolute stability in delay equations. J. Differential Equations, 69 (1987), 185-191. CrossRef
Brauer, F., Soudack, A. C.. Stability regions and transition phenomena for harvested predator-prey systems. J. Math. Biol., 7 (1979), 319-337. CrossRef
Brauer, F., Soudack, A. C.. Stability regions in predator-prey systems with constant-rate prey harvesting. J. Math. Biol., 8 (1979), 55-71. CrossRef
Brauer, F., Soudack, A. C.. Coexistence properties of some predator-prey systems under constant rate harvesting and stocking. J. Math. Biol., 12 (1981), 101-114. CrossRef
Brelot, M.. Sur le problème biologique héréditaiare de deux especès dévorante et dévorée. Ann. Mat. Pura Appl., 9 (1931), 58-74. CrossRef
Bush, A. W., Cook, A. E.. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theoret. Biol., 63 (1976), 385-395. CrossRef
Cao, Y., Freedman, H. I.. Global attractivity in time-delayed predator-prey systems. J. Austral. Math. Soc. Ser. B, 38 (1996), 149-162. CrossRef
Caperon, J.. Time lag in population growth response of isochrysis galbana to a variable nitrate environment. Ecology, 50 (1969), 188-192. CrossRef
Chin, Y.-S.. Unconditional stability of systems with time-lags. Acta Math. Sinica, 1 (1960), 125-142.
Cooke, K. L., Grossman, Z.. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl., 86 (1982), 592-627. CrossRef
Cooke, K. L., van den Driessche, P.. On zeros of some transcendental equations. Funkcialaj Ekvacioj, 29 (1986), 77-90.
J. M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Springer-Verlag, Heidelberg, 1977.
J. M. Cushing. Stability and maturation periods in age structured populations. In “Differential Equations and Applications in Ecology, Epidemics, and Population Problems”, S. Busenberg and K. L. Cooke (Eds.), Academic Press, New York, 1981, pp. 163-182.
Cushing, J. M., Saleem, M.. A predator prey model with age structure. J. Math. Biol., 14 (1982), 231-250. Erratum: 16 (1983), 305. CrossRef
Dai, G., Tang, M.. Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math., 58 (1998), 193-210. CrossRef
Dai, L. S.. Nonconstant periodic solutions in predator-prey systems with continuous time delay. Math. Biosci., 53 (1981), 149-157. CrossRef
Datko, R.. A procedure for determination of the exponential stability of certain differential difference equations. Quart. Appl. Math., 36 (1978), 279-292. CrossRef
J. Dieudonné. Foundations of modern analysis. Academic Press, New York, 1960.
B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia, 2002.
Faria, T.. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl., 254 (2001), 433-463. CrossRef
Faria, T., Magalh, L. T. $\tilde a$ es. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. J. Differential Equations, 122 (1995), 201-224. CrossRef
Faria, T., Magalh, L. T. $\tilde a$ es. Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcations. J. Differential Equations, 122 (1995), 181-200. CrossRef
Farkas, A., Farkas, M., Szabó, G.. Multiparameter bifurcation diagrams in predator-prey models with time lag. J. Math. Biol., 26 (1988), 93-103. CrossRef
H. I. Freedman. Deterministic Mathematical Models in Population Ecology. HIFR Consulting Ltd., Edmonton, 1987.
Freedman, H. I., Gopalsamy, K.. Nonoccurence of stability switching in systems with discrete delays. Canad. Math. Bull., 31 (1988), 52-58. CrossRef
Freedman, H. I., Rao, V. S. H.. The tradeoff between mutual interference and time lags in predator-prey systems. Bull. Math. Biol., 45 (1983), 991-1004. CrossRef
Freedman, H. I., Rao, V. S. H.. Stability criteria for a system involving two time delays. SIAM J. Appl. Anal., 46 (1986), 552-560.
Freedman, H. I., Wolkowicz, G. S. K.. Predator-prey systems with group defence: The paradox of enrichment revisited. Bull. Math. Biol., 48 (1986), 493-508. CrossRef
Goel, N. S., Maitra, S. C., Montroll, E. W.. On the Volterra and other nonlinear models of interacting populations. Rev. Modern Phys., 43 (1971), 231-276. CrossRef
Gopalsamy, K.. Harmless delay in model systems. Bull. Math. Biol., 45 (1983), 295-309. CrossRef
Gopalsamy, K.. Delayed responses and stability in two-species systems. J. Austral. Math. Soc. Ser. B, 25 (1984), 473-500. CrossRef
K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht, 1992.
Gourley, S., Kuang, Y.. A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol., 49 (2004), 188-200. CrossRef
Hale, J. K., Infante, E. F., Tsen, F.-S. P.. Stability in linear delay equations. J. Math. Anal. Appl., 105 (1985), 533-555. CrossRef
J. K. Hale, S. M. Verduyn Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.
B. D. Hassard, N. D. Kazarinoff, Y.-H. Wan. Theory and applications of Hopf bifurcation. Cambridge University Press, London, 1981.
A. Hastings. Age-dependent predation is not a simple process: I. continuous time models. Theoret. Pop. Biol., 23 (1983), 347-362.
Hastings, A.. Delays in recruitment at different trophic levels: effects on stability. J. Math. Biol., 21 (1984), 35-44. CrossRef
He, X.-Z.. Stability and delays in a predator-prey system. J. Math. Anal. Appl., 198 (1996), 355-370. CrossRef
He, X.-Z.. The Lyapunov functionals for delay Lotka-Volterra-type models. SIAM J. Appl. Math., 58 (1998), 1222-1236. CrossRef
Hogarth, W. L., Norbury, J., Cunning, I., Sommers, K.. Stability of a predator-prey model with harvesting. Ecol. Modelling, 62 (1992), 83-106. CrossRef
W. Huang. Algebraic criteria on the stability of the zero solutions of the second order delay differential equations. J. Anhui University, (1985), 1–7.
Hutchings, J. A., Myers, R. A.. What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci., 51 (1994), 2126-2146. CrossRef
Y. Kuang. Delay differential equations with applications in population dynamics. Academic Press, New York, 1993.
Y. A. Kuznetsov. Elements of applied bifurcation theory. Applied Mathematical Sciences 112, Springer-Verlag, New York, 1995.
S. Liu, L. Chen, R. Agarwal. Recent progress on stage-structured population dynamics. Math. Computer Model.,36 (2002), 1319-1360.
Liu, Z., Yuan, R.. Stability and bifurcation in a delayed predator-prey system with Beddinton-DeAngelis functional response. J. Math. Anal. Appl., 296 (2004), 521-537. CrossRef
Lu, Z., Wang, W.. Global stability for two-species Lotka-Volterra systems with delay. J. Math. Anal. Appl., 208 (1997), 277-280. CrossRef
Ma, Z.. Stability of predation models with time delay. Applicable Anal., 22 (1986), 169-192.
Mahaffy, J. M.. A test for stability of linear differential delay equations. Quart. Appl. Math., 40 (1982), 193-202. CrossRef
Martin, A., Ruan, S.. Predator-prey models with delay and prey harvesting. J. Mathematical Biology, 43 (2001), 247-267. CrossRef
May, R. M.. Time delay versus stability in population models with two and three trophic levels. Ecology, 4 (1973), 315-325. CrossRef
N. MacDonald. Time lags in biological models. Springer-Verlag, Heidelberg, 1978.
Myers, R. A., Hutchings, J. A., Barrowman, N. J.. Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecol. Appl., 7 (1997), 91-106. CrossRef
Myers, R. A., Worm, B.. Rapid worldwide depletion of large predatory fish communities. Nature, 423 (2003), 280-283. CrossRef
Myerscough, M. R., Gray, B. F., Hogarth, W. L., Norbury, J.. An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking. J. Math. Biol., 30 (1992), 389-411. CrossRef
Nakaoka, S., Saito, Y., Takeuchi, Y.. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Math. Biosci. Engineer., 3 (2006), 173-187.
Nunney, L.. The effect of long time delays in predator-prey systems. Theoret. Pop. Biol., 27 (1985), 202-221. CrossRef
Nunney, L.. Absolute stability in predator-prey models. Theoret. Pop. Biol., 28 (1985), 209-232. CrossRef
Qu, Y., Wei, J.. Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure. Nonlinear Dynamics, 49 (2007), 285-294. CrossRef
Ross, G. G.. A difference-differential model in population dynamics. J. Theoret. Biol., 37 (1972), 477-492. CrossRef
Ruan, S.. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart. Appl. Math., 59 (2001), 159-173. CrossRef
S. Ruan. Delay differential equations in single species dynamics. In “Delay Differential Equations with Applications,” O. Arino, M. Hbid and E. Ait Dads (Eds.), NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 205, Springer, Berlin, 2006, pp. 477-517.
Ruan, S., Wei, J.. On the zeros of transcendental functions with applications to stability of delay differential equations. Dynam. Contin. Discr. Impuls. Syst., 10 (2003), 863-874.
S. Ruan, D. Xiao. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J, Appl. Math., 61 (2001), 1445-1472.
Sokol, W., Howell, J. A.. Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng., 23 (1980), 2039-2049. CrossRef
Song, Y., Peng, Y., Wei, J.. Bifurcations for a predator-prey system with two delays. J. Math. Anal. Appl., 337 (2008), 466-479. CrossRef
Song, Y., Wei, J.. Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system. J. Math. Anal. Appl., 301 (2005), 1-21. CrossRef
Stépán, G.. Great delay in a predator-prey model. Nonlinear Anal., 10 (1986), 913-929. CrossRef
Táboas, P.. Periodic solutions of a planar delay equation. Proc. Roy. Soc. Edinburgh, 116A (1990), 85-101. CrossRef
Volterra, V.. Variazionie fluttuazioni del numbero d'individui in specie animali conviventi. Mem. Acad. Lincei., 2 (1926), 31-113.
V. Volterra. Lecons sur la théorie mathematique de la lutte pour la vie. Gauthier-Villars, Paris, 1931.
Wang, W., Chen, L.. A predator-prey system with stage-structure for predators. Computers Math. Appl., 33 (1997), No. 8, 83-91. CrossRef
Wangersky, P. J., Cunningham, W. J.. Time lag in prey-predator population models. Ecology, 38 (1957), 136-139. CrossRef
Wolkowicz, G. S. K.. Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math., 48 (1988), 592-606. CrossRef
Wu, J.. Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc., 350 (1998), 4799-4838. CrossRef
J. Xia, Z. Liu, R. Yuan, S. Ruan. The effects of harvesting and time delay on predator-prey systems with Holling type II functional response. SIAM J. Appl. Math. (revised).
Xiao, D., Li, W.. Stability and bifurcation in a delayed ratio-dependent predator-prey system. Proc. Edinburgh Math. Soc., 46A (2003), 205-220.
Xiao, D., Ruan, S.. Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Institute Communications, 21 (1999), 493-506.
Xiao, D., Ruan, S.. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differential Equations, 176 (2001), 494-510. CrossRef
Yan, X.-P., Li, W.-T.. Hopf bifurcation and global periodic solutions in a delayed predator-prey system. Appl. Math. Computat., 177 (2006), 427-445. CrossRef
Zhao, T., Kuang, Y., Smith, H. L.. Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems. Nonlinear Anal., 28 (1997), 1373-1394. CrossRef