Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T03:05:58.221Z Has data issue: false hasContentIssue false

Evolutionary Games in Space

Published online by Cambridge University Press:  27 November 2009

N. Kronik
Affiliation:
Department of Applied Mathematics, Holon Institute of Technology, Holon 58102, Israel
Y. Cohen*
Affiliation:
Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55118
Get access

Abstract

The G-function formalism has beenwidely used in the context of evolutionary games for identifyingevolutionarily stable strategies (ESS). This formalism wasdeveloped for and applied to point processes. Here, we examine the G-functionformalism in the settings of spatial evolutionarygames and strategy dynamics, based on reaction-diffusion models. We startbyextending the point process maximum principle to reaction-diffusion modelswith homogeneous, locally stable surfaces. We then develop the strategy dynamics forsuch surfaces. When the surfaces are locally stable, but nothomogenous, the standard definitions of ESS and the maximumprinciple fall apart. Yet, we show by examples that strategy dynamics leads toconvergent stable inhomogeneous strategies that are possibly ESS, in the sensethat for many scenarios which we simulated,invaders could not coexist with the exisiting strategies.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P.A.. Adaptive dynamics: Neither F nor G. Evol. Ecol. Res., 3 (2001), 369373.
Abrams, P.A., Matsuda, H.. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol., 7 (1993), 465487. CrossRef
Alonso, D., Bartumeus, F., Catalan, J.. Mutual interference between predators can give rise to Turing spatial patterns. Ecology, 83 (2002), 2834. CrossRef
H. Anton.and C. Rorres. Elementary linear algebra: applications version. 8th Edition. John Wiley & Sons, New York, 2000.
J. Apaloo. Revisting strategic models of evolution: The concept of neighborhood invader strategies. Theor. Pop. Biol.,52 (1997), 71–77.
N.F. Britton. Reaction-diffusion equations and their applications to biology. Academic Press, New York, 1986.
J.S. Brown, N.B. Pavlovic. Evolution in heterogeneous environments - effects of migtation on habitat specialization. Evol. Ecol. 6 (1992),360–382.
Brown, J.S., Vincent, T.L.. A theory for the evolutionary game. Theor. Pop. Biol., 31 (1987), 140166. CrossRef
Brown, J.S., Vincent, T.L.. Organiztion of predator-prey communities as an evolutionary game. Evolution, 46 (1992), 12691283. CrossRef
R.G. Casten, C.J. Holland. Stability properties of solutions of systems of reaction-diffusion equations. SIAM J. Appl. Math. 33 (1977), 353–364.
Cohen, Y., Pastor, J., Vincent, T.L.. Evolutionary strategies and nutrient cycling in ecosystems. Evol. Ecol. Res., 2 (2000), 719743.
Cohen, Y., Vincent, T.L., Brown, J.S.. A G-function approach to fitness minima, fitness maxima, evolutionarily stable strategies and adaptive landscapes. Evol. Ecol. Res., 1 (1999), 923942.
Cressman, R., Vickers, G.T.. Spatial and density effects in evolutionary game theory. Math. Biol., 184 (1997), 359369.
Dieckmann, U., Law, R.. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol., 34 (1996), 579612. CrossRef
Durrett, R., Levin, S.. The importance of being discrete (and spatial). Theor. Pop. Biol., 46 (1994), 363394. CrossRef
Durrett, R., Levin, S.. Allelopathy in spatially distributed populations. J. Theor. Biol., 185 (1997), 165171. CrossRef
I. Eshel. Evolutionary and continuous stability. J. Theor. Biol. 108 (1983), 99–111.
I. Eshel. On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34 (1996), 485–510.
I. Eshel, U. Motro. Kin selection and strong evolutionary stability of mutual help. Theor. Pop. Biol. 19 (1981), 420–433.
G. Gause. The struggle for existence. Williams and Wilkins, Baltimore, 1934.
Geritz, S.A.H., Gyllenberg, M., Jacobs, F.J.A., Parvinen, K.. Invasion dynamics and attractor inheritance. J. Math. Biol., 44 (2002), 548560. CrossRef
Geritz, S.A.H., Kisdi, S.A.H., Meszéna, G., Metz, J.A.J.. Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 3557. CrossRef
S.A.H. Geritz, J.A.J. Metz. É. Kisdi, G. Meszéna. Dynamics of adaptation and evolutionary branching. Physical Review Letters 78, 2024–2027.
Gorban, A.. Selection theorem for systems with inheritance. Math. Model. Nat. Phenom., 2 (2007), 145. CrossRef
P. Grindrod. The theory and applications of reaction-diffusion equations: patterns and waves. 2nd Edition. Clarendon press, Oxford, 1996.
Gyllenberg, M., Metz, J.A.. On fitness in structured metapopulations. J. Math. Biol., 43 (2001), 545560. CrossRef
Hadeler, K.P.. Diffusion in Fisher's population model. Rocky Mountain J. Math., 11 (1981), 3945. CrossRef
J. Haldane. The causes of evolution. Princeton University Press, 1932.
Hines, W.G.S.. Evolutionary stable strategies: A review of basic theory. Theor. Pop. Biol., 31 (1987), 195272. CrossRef
Hutson, V. C.L., Vickers, G.T.. Travelling waves and dominance of ESS's. J. Math. Biol., 30 (1992), 457471. CrossRef
N. Kalev-Kronik. Evolutionary games in space. Ph.D. Thesis, University of Minneosta, 2006.
W. Kaplan. Advanced calculus. Addison-Wesley, Reading, 1952.
C.L. Lehman, D. Tilman. Spatial Ecology : The Role of Space in Population Dynamics and Interspecific Interactions,chapter: Competition in Spatial Habitats.. Princeton University Press, Princeton, 1997.
J.L. Lions. Equations differentielles operationelles. Springer-Verlag, New-York, 1961.
S. Lipschutz. Linear algebra. McGraw-Hill, New York, 1991.
J. Maynard-Smith. Evolution and the theory of games. Cambridge University Press, Cambridge, 1982.
Maynard-Smith, J., Price, G.. The logic of animal conflict. Nature, 246 (1973), 1518. CrossRef
Metz, J.A.J., Gyllenberg, M.. How should we define fitness in structured metapopulation models?. Proc. Royal Soc. London B, 268 (2001), 499508. CrossRef
J. Murray. Mathematical biology, 2nd Edition, Springer-Verlag, Berlin, 1993.
Neuhauser, C.. Habitat destruction and competitive coexistence in spatially explicit models with local interactions. J. Theor. Biol., 193 (1998), 445463. CrossRef
Neuhauser, C., Pacala, S.W.. An explicit spatial version of the lotka-volterra model with interspecific competition. Ann. Appl. Probab., 9 (1999), 12261259.
Othmer, H.G., Scriven, L.E.. Interactions of reaction and diffusion in open systems. Ind. Eng. Chem. Fund., 8 (1969), 302313. CrossRef
Parvinen, K.. Evolution of migration in a metapopulation. Bul. Math. Biol., 61 (1999), 531550. CrossRef
Qian, H., Murray, J.. A simple method of parameter space determination for diffusion-driven instability with three species. Appl. Math. Let., 9 (2001), 405411. CrossRef
Sasaki, A., Kawaguchi, I., Yoshimori, A.. Spatial mosaic and interfacial dynamics in a Müllerian mimicry system. Theor. Pop. Biol., 61 (2002), 4971. CrossRef
Segel, L.E., Jackson, J.L.. Dissipative structure: An explanation and an ecological example. J. Theor. Biol., 37 (1972), 545559. CrossRef
J. Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag, New York, 1983.
Takada, T., Kigami, J.. The dynamical attainability of ESS in evolutionary games. J. Math. Biol., 29 (1991), 513529. CrossRef
Taylor, P.D.. Evolutionary stability in one-parameter models under weak selection. Theor. Pop. Biol., 36 (1989), 125143. CrossRef
D. Tilman, P. Kareiva eds. Spatial ecology : the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, 1997.
Turing, A.M.. On the chemical basis of morphogenesis. Phil. Trans. B., 237 (1952), 3737. CrossRef
G.T. Vickers, Spatial patterns and ESS's. J. Theo. Biol., 140 (1989), 129–135.
Vickers, G.T.,V.C.L. Hutson, C.J. Budd. Spatial patterns in population conflicts. J. Math. Biol., 31 (1993), 411430. CrossRef
T. Vincent, Evolutionary games. J. Optim. Theor. Appl., 46 (1985), 605–612. CrossRef
Vincent, T., Brown, J.. Evolution under nonequilibrium dynamics. Math. Model., 8 (1987), 766771. CrossRef
T.L. Vincent, J. Brown. Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press, Cambridge, 2005.
Vincent, T. Evolutionary stable strategies in differential and difference equation models. Evol. Ecol., 2, (1988), 321–337.
Vincent, T.L., Cohen, Y., Brown, J.S.. Evolution via strategy dynamics. Theor. Pop. Biol., 44 (1993), 149176. CrossRef
Vincent, T.L., Van, M.V., Goh, G.S.. Ecological stability, evolutionary stability, and the ESS Maximum Principle. Evol. Ecol., 10 (1996), 567591. CrossRef
Zakharov, V., L'vov, V.S., Starobinets, S.S.. Spin-wave turbulence beyond the parametric excitation threshold. Soviet Physics Uspekhii, 17 (1975), 896919. CrossRef