Published online by Cambridge University Press: 12 June 2013
An overview of recently obtained authors’ results on traveling wave solutions of someclasses of PDEs is presented. The main aim is to describe all possible travelling wavesolutions of the equations. The analysis was conducted using the methods of qualitativeand bifurcation analysis in order to study the phase-parameter space of the correspondingwave systems of ODEs. In the first part we analyze the wave dynamic modes of populationsdescribed by the “growth - taxis - diffusion" polynomial models. It is shown that“suitable" nonlinear taxis can affect the wave front sets and generate non-monotone waves,such as trains and pulses, which represent the exact solutions of the model system.Parametric critical points whose neighborhood displays the full spectrum of possible modelwave regimes are identified; the wave mode systematization is given in the form ofbifurcation diagrams. In the second part we study a modified version of theFitzHugh-Nagumo equations, which model the spatial propagation of neuron firing. We assumethat this propagation is (at least, partially) caused by the cross-diffusion connectionbetween the potential and recovery variables. We show that the cross-diffusion version ofthe model, besides giving rise to the typical fast travelling wave solution exhibited inthe original “diffusion" FitzHugh-Nagumo equations, additionally gives rise to a slowtraveling wave solution. We analyze all possible traveling wave solutions of the model andshow that there exists a threshold of the cross-diffusion coefficient (for a given speedof propagation), which bounds the area where “normal" impulse propagation is possible. Inthe third part we describe all possible wave solutions for a class of PDEs withcross-diffusion, which fall in a general class of the classical Keller-Segel modelsdescribing chemotaxis. Conditions for existence of front-impulse, impulse-front, andfront-front traveling wave solutions are formulated. In particular, we show that anon-isolated singular point in the ODE wave system implies existence of free-boundaryfronts.