No CrossRef data available.
Published online by Cambridge University Press: 29 February 2012
A linear, uniformly stratified ocean model is used to investigate propagation of baroclinic Kelvin waves in a cylindrical basin. It is found that smaller wave amplitudes are inherent to higher mode individual terms of the obtained solutions that are also evanescent away of a costal line toward the center of the circular basin. It is also shown that the individual terms if the obtained solutions can be visualized as spinning patterns in rotating stratified fluid confined in a circular basin. Moreover, the fluid patterns look rotating in an anticlockwise sense looking above the North Pole and that spinning is more intensive for smaller mode numbers. Finally, we observe the existence of the oceanic region where the pressure increases relatively rapidly with the depth.