Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:09:23.801Z Has data issue: false hasContentIssue false

Yet more characterisations of parallelograms

Published online by Cambridge University Press:  03 July 2023

Mowaffaq Hajja
Affiliation:
P. O. Box 388 (Al-Husun), 21510 Irbid – Jordan e-mail: [email protected], [email protected]
Panagiotis T. Krasopoulos
Affiliation:
Department of Informatics, KEAO Electronic National Social Security Fund 12 Patision St. 10677 Athens – Greece e-mail: [email protected], [email protected]

Extract

This article, like our previous one [1], combines known and new characterisations of parallelograms. Both can be thought of as additions to Martin Josefsson’s series on ‘characterisations of’ and ‘properties of’ various types of quadrilaterals – a series that does not include parallelograms. Josefsson’s publications can be found listed in [2], [3] and [4]. For the importance of characterisations in geometry, see [5].

Type
Articles
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hajja, M. and Krasopoulos, P. T., More characterisations of parallelograms, Math. Gaz. 107 (March 2023) pp. 7683.Google Scholar
Josefsson, M., The importance of characterisations in geometry, Math. Gaz. 102 (July 2018) pp. 302307.CrossRefGoogle Scholar
Viglione, R., The Thébault configuration keeps on giving, Math. Gaz. 104 (March 2020) pp. 7481.CrossRefGoogle Scholar
Viglione, R., An extension of the Thébault second problem, Math. Gaz. 103 (July 2019) pp. 343346.CrossRefGoogle Scholar
Hahn, L-s, Complex numbers & geometry, MAA, Washington (1994).Google Scholar
Andreescu, T. and Andrica, D., Complex numbers from A to … Z, Birkhäuser (2006).Google Scholar
Needham, T., Visual complex analysis, Clarendon (1997).Google Scholar
Van Aubel, M. H., Note concernant les centres de carrés construits sur le côtés d’un polygone quelqonque, Nouvelles Corresp. Math. 4 (1878) pp. 4044.Google Scholar
Finney, R. L., Dynamical proofs of Euclidean theorems, Math. Mag. 43 (1970) pp. 177185.CrossRefGoogle Scholar
Engel, A., Problem-solving strategies, Springer (1998).Google Scholar
Al-Afifi, Gh., Hajja, M., and Hamdan, A., Another n-dimensional generalization of Pompeiu’s theorem, Amer. Math. Monthly 125 (2018) pp. 612622.CrossRefGoogle Scholar
Al-Afifi, Gh., Hajja, M., Hamdan, A. and Krasopoulos, P. T., Pompeiulike theorems for the medians of a simplex, Math. Ineq. Appl., 21 (2018) pp. 539552.Google Scholar
Barbara, R., Problem 90F, Math. Gaz. 90 (July 2006) p. 354.Google Scholar
McCartin, B. J., Mysteries of the equilateral triangle, Hikari Ltd (2010).Google Scholar
Fomin, D., Genkin, S. and Itenberg, I., Mathematical circles (Russian experience), Amer. Math. Society (1996).CrossRefGoogle Scholar
Pop, O. T., Minculete, N. and Bencze, M., An introduction to quadrilateral geometry, Editura Dedicata si Pedagigica, Romania (2013).Google Scholar
Melzak, Z. A., Invitation to geometry, John Wiley (1983).Google Scholar
Silvester, J. R., Geometry, ancient and modern, Oxford University Press (2001).Google Scholar
Andreescu, T. and Crişan, V., Mathematical induction, XYZ Press (2017).Google Scholar