No CrossRef data available.
Published online by Cambridge University Press: 01 August 2016
The mysterious path of discovery – the tireless experimentation in search of patterns, the veiled connections that suddenly unfold, serendipity – all these elements combine to make mathematics so magical. The purpose of this note is to show how a routine algebraic identity, the binomial expansion of (x - 1)2, can be used to give a new proof of the fundamental inequality between the arithmetic and geometric means. The proof will provide further evidence that a great deal of useful mathematics can be derived from the obvious assertion that the square of a real number is never negative.