Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:22:37.642Z Has data issue: false hasContentIssue false

On the Multiplication of Complex Numbers

Published online by Cambridge University Press:  03 November 2016

Extract

In the development of the theory of complex numbers, it is important to give a definition of them dependent only upon real numbers. In the usual algebraic treatments the product is postulated in the form

or obtained from a matrix representation. The object of the present note is to show by elementary methods that the assumption that the multiplication of complex numbers is distributive, associative, and such that the vanishing of a product implies the vanishing of at least one factor, is sufficient to define the product. This is indeed merely a special case of results well known in the theory of linear algebras.

Type
Research Article
Copyright
Copyright © The Mathematical Association 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)