Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T02:58:11.904Z Has data issue: false hasContentIssue false

Monotonicity of the midpoint and trapezium estimates for integrals

Published online by Cambridge University Press:  13 October 2021

G. J. O. Jameson*
Affiliation:
13 Sandown Road, Lancaster LA1 4LN, e-mail: [email protected]

Extract

The ‘midpoint’ approximation to the integral $$\int_0^1 f $$ is

$${M_n}\left( f \right) = {1 \over n}\sum\limits_{r = 1}^n f \left( {{{2r - 1} \over {2n}}} \right)$$
.

Type
Articles
Copyright
© The Mathematical Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, Grahame and Jameson, Graham, Monotonic averages of convex functions, J. Math. Anal. Appl. 252 (2000) pp. 410-430.10.1006/jmaa.2000.7087CrossRefGoogle Scholar
Bennett, Grahame, Meaningful sequences and the theory of majorization, Houston J. Math. 35 (2009) pp. 573-589.Google Scholar
Bennett, Grahame, Some forms of majorization, Houston J. Math. 36 (2010) pp. 1037-1066.Google Scholar
Jameson, G. J. O., Counting zeros of generalised polynomials, Math. Gaz. 90 (July 2006) pp. 223-234.CrossRefGoogle Scholar
Jameson, G. J. O., Two ways to generate monotonic sequences: convexity and ratios, Math. Gaz. 105 (March 2021) pp. 16-2610.1017/mag.2021.4CrossRefGoogle Scholar