Published online by Cambridge University Press: 16 October 2017
Tangential quadrilaterals are defined to be quadrilaterals in which a circle can be inscribed that is tangent to all four sides. It is well known and easy to prove that a convex quadrilateral is tangential if, and only if, the angle bisectors of all four vertex angles are concurrent at a point, which is the centre of the inscribed circle (incircle). The most well-known and in problem solving useful characterisation of tangential quadrilaterals is Pitot's theorem, which states that a convex quadrilateral is tangential if and only if its consecutive sides a, b, c, d satisfy the relation a + c = b + d [1, pp. 64-67]. If you want to have more background information about characterisations of tangential quadrilaterals, then we recommend you to check out the lovely papers [2, 3, 4], as well as our previous contributions on the subject [5, 6, 7]. These six papers together include about 30 characterisations that are either proved or reviewed there with references.