No CrossRef data available.
Published online by Cambridge University Press: 15 February 2024
Euler’s polynomial f (n) = n2 + n + 41 is famous for producing 40 different prime numbers when the consecutive values 0, 1, …, 39 are substituted: see Table 1. Some authors, including Euler, prefer the polynomial f (n − 1) = n2 − n + 41 with prime values for n = 1, …, 40. Since f (−n) = f (n − 1), f (n) actually takes prime values (with each value repeated once) for n = −40, −39, …, 39; equivalently the polynomial f (n − 40) = n2 − 79n + 1601 takes (repeated) prime values for n = 0, 1, …, 79.