Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-26T21:44:43.353Z Has data issue: false hasContentIssue false

Equally spaced squares and some impossible identities

Published online by Cambridge University Press:  23 August 2024

G.J.O. Jameson*
Affiliation:
13 Sandown Road, Lancaster LA1 4LN, e-mail: [email protected]

Extract

Consecutive squares are, of course, not equally spaced: the gap increases by 2 each time. However, it is quite possible to select three equally spaced squares, for example 1, 25, 49. Actually, such triples correspond to Pythagorean triples in a pleasantly simple way, which we will describe.

Type
Articles
Copyright
© The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Pocklington, H. C., Some diophantine impossibilities, Proc. Cambridge Phil. Soc. 17 (1914) pp. 110118.Google Scholar
van der Poorten, Alf, Fermat’s four squares theorem, arXiv:0712.3850v1 (2007), available at arXiv.org.Google Scholar
Jones, G. A. and Jones, J. M., Elementary Number Theory, Springer (1998).CrossRefGoogle Scholar
Dolan, Stan, Fermat’s method of “descente infinie”, Math. Gaz. 95 (July 2011) pp. 269271.CrossRefGoogle Scholar