Published online by Cambridge University Press: 02 March 2020
The set of solutions to the equation xy = yx has been studied extensively over the past three centuries, including work by well known mathematicians such as Daniel Bernoulli (1700–1782), Leonhard Euler (1707–1783), and Christian Goldbach (1690–1764). Various mathematicians have focused on the integer, rational, real, and complex solutions. For example, it has been shown (see [1]) that the equality 24 = 42 gives the only distinct integer solutions. Our exposition below presents some of the key ideas behind the positive real solutions to this equation and illustrates how rational solutions can be found. To learn more about the various solutions, the reader can consult the articles listed at the end of this paper, as well as the extensive references given in these articles. It is also possible to find some of this material on the Web.