No CrossRef data available.
Published online by Cambridge University Press: 03 November 2016
While it is clearly impossible for the average high school teacher of mathematics to become familiar with all the modern branches of this subject, it is desirable that he should not be totally ignorant of any extensive branch. The views of a number of eminent mathematicians often furnish one of the simplest as well as one of the most reliable introductions to the nature and the scope of a difficult subject. The following list of quotations has been prepared for the purpose of providing such an introduction for one subject. The list could easily be extended, but the variety and the standing of the mathematicians quoted are perhaps sufficient to inspire confidence. The qnotations are arranged chronologica1ly, beginning with 1892. several of them were published in the American Mathematical Monthly, volume x. 1903, p. 87
Reprinted by permission from School Science and Mathematics, with some alterations adn additions by the author.
2 Bachmann, , Die Elemente der Zahlentheorie, vol. 1, 1892, Preface.Google Scholar
3 Klein, , Einleitung in die höhere Geometrie LL., 1893, p. 3.Google Scholar
4 Newcomb, , Bulletin of the American Mathematical Society, vol. 3, 1893, p. 107 Google Scholar
5 Frobenius, , Berliner Sitzungsberichte, 1893, p. 627 Google Scholar
6 Lie, , Centenaire de l’École Normale, 1895, p. 485.Google Scholar
7 Picard, , Traité d’analyse, vol. 3, 1896, p. 492.Google Scholar
8 Picard, , Œuvres mathématiques de Galois, 1897, Introduction.Google Scholar
9 Russell, , Foundations of Geometry, 1897, p. 47 Google Scholar
10 Fricke und Klein, , Automorphe Functionen, vol. 1, 1897, p. 1.Google Scholar
11 Weber, , Lehrbuch der Algebra, vol. 1, 1898, Preface.Google Scholar
12 Poincaré, , The Monist, vol. 9, 1898, p. 31.Google Scholar
13 Pund, , Algebra mit Einschluss der elementaren Zahlentheorie, 1899, Preface.Google Scholar
14 Darboux, , Comptes Rendus, vol. 128, 1899, 528.Google Scholar
15 Bianchi, , Lezioni sidla teoria dei gruppi di sostituzioni, 1900, Preface.Google Scholar
16 Maschke, , American Mathematical Monthly, vol. 9, 1902, p. 214.CrossRefGoogle Scholar
17 MajorMacMahon, , Nature, vol. 65, 1902, p. 448.Google Scholar
18 Richard, , Sur la philosophie des mathématiques, 1903, p. 229.Google Scholar
19 Pierpont, , Bulletin of the American Mathematical Society, vol. 11, 1904, p. 144.CrossRefGoogle Scholar
20 Couturat, , Les principes des mathématiques, 1905, p. 329.Google Scholar
21 Fano, , Encyklopaedie der Mathematischen Wissenschaften, vol. 3, 1908, p. 293.Google Scholar
22 Bôcher, , Introduction to Higher Algebra, 1907, p. 80.Google Scholar
23 Fehr, , L’Enseignement Mathématique, vol. 9, 1907, p. 192.Google Scholar
24 Poincaré, , Bulletin des Sciences mathématiques, vol. 32, 1908, p. 175.Google Scholar
25 Borei, , Die Elemente der Mathematik, vol. 2, 1909, Preface.Google Scholar
26 Mueller, , Führer durch die mathematische Literatur, 1909, p. 64.Google Scholar