Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:41:20.292Z Has data issue: false hasContentIssue false

On Functions Which form a Group

Published online by Cambridge University Press:  03 November 2016

E. J. F. Primrose*
Affiliation:
Dept. of Mathematics, University of Leicester

Extract

In The Gazette for February 1962 (Vol. XLVI, pp. 1–5), Mr. Roger North gave a very interesting method for constructing a group of any even order whose elements are functions of x, the rule of combination being substitution of one function in another. He also showed that the group of order 8 so formed is isomorphic to the octic group, the group of rotations of a square. (See also the article by Miss Joan Holland in The Gazette for February 1964, pp. 47-57.)

Type
Research Article
Copyright
Copyright © Mathematical Association 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

page 22 note * Since I wrote this article, a proof of this result by Dr. A. Brown appeared in The Gazette, February 1965, pp. 77–8.