We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
1.Chandon, J. L., Lemaire, J., and Pouget, J., Dénombrement des quasi-ordres sur un ensemble fini, Mathématiques et Sciences Humaines62 (1978) pp. 61–80.Google Scholar
2
2.Riordan, J., An introduction to combinatorial analysis, John Wiley & Sons, Inc., New York (1958).Google Scholar
5.Barthelemy, J. P., An asymptotic equivalent for the number of total preorders on a finite set, Discrete Mathematics29 (1980) pp. 311–313.Google Scholar
6
6.Bailey, R. W., The number of weak orderings of a finite set, Social Choice and Welfare15 (1998) pp. 559–562.Google Scholar
8.Aitken, A. C., A problem in combinations, Edinburgh Mathematical Notes28 (1933) pp. xviii–xxiii.Google Scholar
9
9.Comtet, L., Advanced combinatorics: the art of finite and infinite expansions (revised edition), D. Reidel Publishing Company, Dordrecht, Holland (1974).CrossRefGoogle Scholar
10
10.Kreweras, G., Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines3 (1963) pp. 31–41.Google Scholar