Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:00:38.613Z Has data issue: false hasContentIssue false

Conjecturing a limit

Published online by Cambridge University Press:  23 January 2015

Martin Griffiths
Affiliation:
Mathematical Institute, University of Oxford OX1 3LB
Surajit Rajagopal
Affiliation:
401 Devaarti Building, Mahim West, Mumbai 400016, India

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Teaching Notes
Copyright
Copyright © The Mathematical Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burton, D. M., Elementary number theory, McGraw-Hill (1998).Google Scholar
2. Wikipedia contributors, ‘Mathematical coincidence’, Wikipedia, The Free Encyclopedia: http://en.wikipedia.org/wikilMathematical_coincidence Google Scholar
3. Wikipedia contributors, ‘Heegner number’, Wikipedia, The Free Encyclopedia: http://en.wikipedia.org/wiki/Heegner_number Google Scholar
4. Wikipedia contributors, ‘Reciprocal Fibonacci constant’, Wikipedia, The Free Encyclopedia: http://en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant Google Scholar
5. Weisstein, E. W., ‘Reciprocal Fibonacci Constant’ From MathWorld—A Wolfram Web Resource: http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html Google Scholar
6. Knuth, D. E., The art of computer programming, Volume 1, Addison-Wesley (1968).Google Scholar