Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:03:12.402Z Has data issue: false hasContentIssue false

Appeciative Remarks on the Theory of Groups1

Published online by Cambridge University Press:  03 November 2016

Extract

While it is clearly impossible for the average high school teacher of mathematics to become familiar with all the modern branches of this subject, it is desirable that he should not be totally ignorant of any extensive branch. The views of a number of eminent mathematicians often furnish one of the simplest as well as one of the most reliable introductions to the nature and the scope of a difficult subject. The following list of quotations has been prepared for the purpose of providing such an introduction for one subject. The list could easily be extended, but the variety and the standing of the mathematicians quoted are perhaps sufficient to inspire confidence. The qnotations are arranged chronologica1ly, beginning with 1892. several of them were published in the American Mathematical Monthly, volume x. 1903, p. 87

Type
Research Article
Copyright
Copyright © The Mathematical Association 1911

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Reprinted by permission from School Science and Mathematics, with some alterations adn additions by the author.

References

2 Bachmann, , Die Elemente der Zahlentheorie, vol. 1, 1892, Preface.Google Scholar

3 Klein, , Einleitung in die höhere Geometrie LL., 1893, p. 3.Google Scholar

4 Newcomb, , Bulletin of the American Mathematical Society, vol. 3, 1893, p. 107 Google Scholar

5 Frobenius, , Berliner Sitzungsberichte, 1893, p. 627 Google Scholar

6 Lie, , Centenaire de l’École Normale, 1895, p. 485.Google Scholar

7 Picard, , Traité d’analyse, vol. 3, 1896, p. 492.Google Scholar

8 Picard, , Œuvres mathématiques de Galois, 1897, Introduction.Google Scholar

9 Russell, , Foundations of Geometry, 1897, p. 47 Google Scholar

10 Fricke und Klein, , Automorphe Functionen, vol. 1, 1897, p. 1.Google Scholar

11 Weber, , Lehrbuch der Algebra, vol. 1, 1898, Preface.Google Scholar

12 Poincaré, , The Monist, vol. 9, 1898, p. 31.Google Scholar

13 Pund, , Algebra mit Einschluss der elementaren Zahlentheorie, 1899, Preface.Google Scholar

14 Darboux, , Comptes Rendus, vol. 128, 1899, 528.Google Scholar

15 Bianchi, , Lezioni sidla teoria dei gruppi di sostituzioni, 1900, Preface.Google Scholar

16 Maschke, , American Mathematical Monthly, vol. 9, 1902, p. 214.CrossRefGoogle Scholar

17 MajorMacMahon, , Nature, vol. 65, 1902, p. 448.Google Scholar

18 Richard, , Sur la philosophie des mathématiques, 1903, p. 229.Google Scholar

19 Pierpont, , Bulletin of the American Mathematical Society, vol. 11, 1904, p. 144.CrossRefGoogle Scholar

20 Couturat, , Les principes des mathématiques, 1905, p. 329.Google Scholar

21 Fano, , Encyklopaedie der Mathematischen Wissenschaften, vol. 3, 1908, p. 293.Google Scholar

22 Bôcher, , Introduction to Higher Algebra, 1907, p. 80.Google Scholar

23 Fehr, , L’Enseignement Mathématique, vol. 9, 1907, p. 192.Google Scholar

24 Poincaré, , Bulletin des Sciences mathématiques, vol. 32, 1908, p. 175.Google Scholar

25 Borei, , Die Elemente der Mathematik, vol. 2, 1909, Preface.Google Scholar

26 Mueller, , Führer durch die mathematische Literatur, 1909, p. 64.Google Scholar