Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T23:28:22.925Z Has data issue: false hasContentIssue false

96.20 Pascal's triangle: The hidden stor-e

Published online by Cambridge University Press:  23 January 2015

Harlan J. Brothers*
Affiliation:
Brothers Technology, LLC, PO Box 1016, Branford, CT 06405-8016 USA, e-mail:[email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ross, J. F., Pascal's legacy, EMBO reports, 5, Special Issue (2004) pp. 710.CrossRefGoogle ScholarPubMed
2. Edwards, A. W. F., Pascal's Arithmetical Triangle: The Story of a Mathematical Idea, Johns Hopkins University Press, Baltimore (2002) pp. xiii, 1, 27, 3437.Google Scholar
3. Weisstein, E. W., Pascal's Triangle, from Math World - A Wolfram Web Resource. http://mathworld.wolfram.com/PascalsTriangle.html Google Scholar
5. Weisstein, E. W., Barnes G-Function, from MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/BamesG-Function.html Google Scholar
6. Newton, I., The Mathematical Papers of Isaac Newton, Vol. II 1667-1670, Cambridge University Press (1968) p. 235.Google Scholar
7. Maor, E., e: The Story of a Number, Princeton University Press, (1994) p.35.Google Scholar
8. Brothers, H. J., Improving the convergence of Newton's series approximation for e , College Mathematics Journal 35 (2004) pp. 3439.CrossRefGoogle Scholar
9. Gourdon, X. and Sebah, P., The constant e and its computation. http://www.brotherstechnology.com/math/gourdon~and~sebah.html Google Scholar