Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:00:39.729Z Has data issue: false hasContentIssue false

92.26 An elementary proof of the generalised Fermat problem

Published online by Cambridge University Press:  01 August 2016

Nguyen Minh Ha
Affiliation:
Hanoi University of Education, Hanoi, Vietnam, e-mail: [email protected]
Nikolaos Dergiades
Affiliation:
Hanoi University of Education, Hanoi, Vietnam, e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Simpson, Thomas, Doctrine and application of fluxions, London (1750).Google Scholar
2. Steiner, Jacob, Gesamelte Werke 2, Berlin (1882) p. 729.Google Scholar
3. Lindelöf, L.L., Sur les maxima et minima d’une fonction des rayons vecteurs menés d’un point mobile à plusieurs centres fixes), Acta Soc. Sc. Fenn 8 (1867) pp. 191203.Google Scholar
4. Sturm, Rudolf, Ueber den Punkt kleinster, Entfernungssumme von gegebenen Punkten, Jour.f. die Reine u Angew. Math. (Crelle) 97 (1884) pp. 4961.CrossRefGoogle Scholar
5. Minh Ha, Nguyen, Extending the Fermat-Torricelli Problem, Math. Gaz. 86 (July 2002) pp. 316321.Google Scholar
6. Tong, Jingcheng and Chua, Yaps., The Generalized Fermat Point, Math Mag. 68 (1995) pp. 214215.CrossRefGoogle Scholar
7. Shklyarskii, D.O., Chentsov, N.N. and Yaglom, I.M., Geometrical Inequalities and Problems on Maximum and Minimum, Moskva (1970) pp. 212218.Google Scholar