Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:37:44.608Z Has data issue: false hasContentIssue false

89.57 Non-existence of Fibonacci and Lucas numbers in amicable pairs of opposite parity

Published online by Cambridge University Press:  01 August 2016

John H. Jaroma
Affiliation:
Department of Math. & Comp. Sci., Austin College, Sherman, TX 75090, USA, e-mail: [email protected]
James M. Mitchell
Affiliation:
Department of Chemistry, Austin College, Sherman, TX 75090, USA, e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pedersen, J. M., Known amicable pairs, http://amicable.homepage.dk/knwap.htm Google Scholar
2. García, M., Pedersen, J. M., and te Riele, H. J. J., Amicable pairs, a survey. In: High primes and misdemeanours: Lectures in honour of the 60th birthday of Hugh Cowie Williams, der Poorten, Alf van and Stein, Andreas (eds), Fields Institute Communications, Amer. Math. Soc. (2004) pp. 179196,Google Scholar
3. Lee, E. J. and Madachy, J. S., The history and discovery of amicable numbers, J. Ree. Math. 5 (1972) Part 1 pp. 7793, Part 2 pp. 153–173, Part 3 pp. 231–249. Errata in 6, (1973) p. 53, p. 164 and p. 229.Google Scholar
4. Guy, R. K., Unsolved problems in number theory (3rd ed.), Springer Verlag (2004).Google Scholar
5. Gioia, A. A. and Vaidya, A. M., Amicable numbers with opposite parity, Amer. Math. Monthly, 74 8 (1967) pp. 969973.Google Scholar
6. Cohn, J. H. E., On square Fibonacci numbers, J. London Math. Soc. 39 (1964) pp. 537541.Google Scholar
7. Cohn, J. H. E., Square Fibonacci numbers, etc., Fibonacci Quarterly 2, (1964) pp. 109113.Google Scholar
8. Cohn, J. H. E., Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965) pp. 2428.Google Scholar
9. Dickson, L. E., Theorems and tables on the sum of the divisors of a number, Quart. J. Math. 44 (1913) pp. 264296.Google Scholar
10. McDaniel, W. L. and Ribenboim, P., The square terms in Lucas sequences, J. Number Theory 58 (1996) pp. 104123.Google Scholar