Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:01:51.883Z Has data issue: false hasContentIssue false

87.40 An elementary single-variable proof of

Published online by Cambridge University Press:  01 August 2016

Nick Lord*
Affiliation:
Tonbridge School, Kent TN9 1JP

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thompson, S. P. The life of William Thomson, Baron Kelvin of Largs, Volume 2, Macmillan (1910) p. 1139.Google Scholar
2. Lord, Nick Integrating the normal probability density function with sixth formers, Teaching Statistics 16 (Summer 1994) p. 65.Google Scholar
3. Priestley, H. A. Introduction to integration, Oxford University Press (1997) pp. 156157, 195, 205–206.CrossRefGoogle Scholar
4. Jameson, G. J. O. A first course on complex functions, Chapman and Hall (1970) pp. 124125.CrossRefGoogle Scholar
5. Whittaker, E. T. and Watson, G. N. A course of modern analysis (4th edn), Cambridge University Press (1973) pp. 239–40, 242, 254.Google Scholar
6. Borwein, J. M. and P. B. Pi and the AGM, John Wiley (1987) p. 27.Google Scholar
7. Fowler, David The factorial function: Stirling’s formula, Math. Gaz. 84 (March 2000) pp. 4250.CrossRefGoogle Scholar
8. Romik, Dam Stirling’s approximation for n!: the ultimate short proof?, Amer. Math. Monthly 107 (2000) pp. 556577.CrossRefGoogle Scholar
9. Chung, K. L. Elementary probability theory with stochastic processes (3rd edn), Springer (1979), pp. 238239.CrossRefGoogle Scholar
10. Weir, A. J. Lebesgue integration and measure, Cambridge University Press (1973) pp. 105, 112.CrossRefGoogle Scholar
11. Dörrie, H. 100 great problems of elementary mathematics, Dover (1965) p. 48.Google Scholar
12. Gauthier, N. Evaluating the probability integral, Math. Gaz. 72 (June 1988) pp. 124125.CrossRefGoogle Scholar
13. Desbrow, D. Evaluating the probability integral, Math. Gaz. 74 (June 1990) pp. 169170.CrossRefGoogle Scholar