Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:00:53.405Z Has data issue: false hasContentIssue false

106.14 Exarc radii and the Finsler-Hadwiger inequality

Published online by Cambridge University Press:  24 February 2022

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University "Goce Delcev" - Stip, North Macedonia e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2022. Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leversha, G., The Geometry of the Triangle, UKMT (2013).Google Scholar
Nesbitt, A. M., Problem 15114, Educational Times 55 (May 1902) p. 233.Google Scholar
Engel, A., Problem-Solving Strategies, Springer-Verlag, New York, (1998).Google Scholar
Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem. Math. 72, (2017) pp. 28.Google Scholar
Lukarevski, M., Exradii of the triangle and Euler's inequality, Math. Gaz. 101 (March 2017) p.123.10.1017/mag.2017.18CrossRefGoogle Scholar
Lukarevski, M., A Simple Proof of Kooi's Inequality, Math. Mag. 93 (3), (2020) p. 225.10.1080/0025570X.2020.1736875CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi's inequality, Mittenpunkt and applications, J. Inequal. Appl. 13 (3), (2019) pp. 827832.10.7153/jmi-2019-13-57CrossRefGoogle Scholar
Lukarevski, M., Wanner, G., Mixtilinear radii and Finsler-Hadwiger inequality, Elem. Math. 75 (2020) pp. 121124.Google Scholar
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937) (1), pp. 316326.Google Scholar
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz. 104 (July 2020) pp. 335338.10.1017/mag.2020.63CrossRefGoogle Scholar
Lukarevski, M., The excentral triangle and a curious application to inequalities, Math. Gaz. 102 (November 2018) pp. 531533.10.1017/mag.2018.134CrossRefGoogle Scholar
Kimberling, C., Encyclopedia of Triangle Centers, URL: http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Google Scholar
Yiu, P., Incircles, Mixtilinear, Amer. Math. Monthly, 106 (10) (Dec., 1999), pp. 952-955.10.1080/00029890.1999.12005146CrossRefGoogle Scholar