We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
von Staudt, K. G. C., Beweis eines Lehrsatzes, die Bernouillischen Zahlen betreffend, J. Reine Angew. Math.21 (1840) pp. 372–374.Google Scholar
2
Clausen, T., Theorem, Astron. Nach . 17 (1840) pp. 351–352.Google Scholar
3
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers , Oxford Univ. Press (1979).Google Scholar
4
Ireland, Kenneth and Rosen, Michael, A classical introduction to modern number theory , Springer (1982).CrossRefGoogle Scholar
5
Apostol, Tom M., Introduction to analytic number Theory , Springer (1976).CrossRefGoogle Scholar
6
Carlitz, L., The Staudt-Clausen theorem, Math. Mag . 34 (1961) pp. 131–146.Google Scholar
7
Lucas, E., Théorie des Nombres , Paris (1891).Google Scholar
8
Rzadkowski, Grzegorz, A calculus-based approach to the von Staudt-Clausen theorem, Math. Gaz . 94 (July 2010) pp. 308–312.CrossRefGoogle Scholar
9
Gould, H. W., Explicit formulas for the Bernoulli numbers, Amer. Math. Monthly79 (1972) pp. 44–51.Google Scholar
10
Cameron, P. J., Combinatorics: topics, techniques, algorithms , Cambridge University Press (1994).Google Scholar