Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T01:00:36.994Z Has data issue: false hasContentIssue false

103.43 An inequality arising from the inarc centres of a triangle

Published online by Cambridge University Press:  21 October 2019

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ‘Goce Delcev’ - Stip, North Macedonia e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bankoff, L., Mixtilinear Adventure, A, Crux Math. 9 (1983) pp. 27.Google Scholar
Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities, Groningen, Wolters-Noordhoff (1969).Google Scholar
Lukarevski, M., Exradii of the triangle and Euler’s inequality, Math. Gaz. 101 (March 2017) p. 123.10.1017/mag.2017.18CrossRefGoogle Scholar
Lukarevski, M., An alternate proof of Gerretsen’s inequalities, Elem.Math. 72 (1), (2017) pp. 28.10.4171/EM/317CrossRefGoogle Scholar
Mitrinovic, D. S., Pecaric, J., Volenec, V., Recent advances in geometricinequalities. Kluwer Academic Publishers. Dordrecht (1989).10.1007/978-94-015-7842-4CrossRefGoogle Scholar