Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T16:47:49.114Z Has data issue: false hasContentIssue false

Population structure, distribution and relative abundance of Cerastoderma glaucum (Mollusca: Bivalvia) from the Bou Ghrara Lagoon (Gulf of Gabès, southern Tunisia)

Published online by Cambridge University Press:  27 March 2009

Abdelkarim Derbali*
Affiliation:
Institut National des Sciences et Technologies de la Mer (INSTM), Centre de Sfax, Tunisia
Othman Jarboui
Affiliation:
Institut National des Sciences et Technologies de la Mer (INSTM), Centre de Sfax, Tunisia
Mohamed Ghorbel
Affiliation:
Institut National des Sciences et Technologies de la Mer (INSTM), Centre de Sfax, Tunisia
Nedra Zamouri-Langar
Affiliation:
Institut National des Sciences et Technologies de la Mer (INSTM), Centre de Sfax, Tunisia
*
Correspondence should be addressed to: Abdelkarim Derbali, Institut National des Sciences et Technologies de la Mer (INSTM), Centre de Sfax, Tunisia email: [email protected]
Get access

Abstract

In the first description of the population structure of the cockle Cerastoderma glaucum, a preliminary stock assessment and spatial distribution have been investigated in the Bou Ghrara Lagoon. The main results collected about this species in the coastal zone of the lagoon from 2003 through to 2004 have been recapitulated. A total of 671 cockles was collected, treated and the demographic structure of this species was studied. In terms of geographical occupation, maps of the population distributions were drawn. They showed that this population has a significant fluctuation in the colonized surface, which was roughly divided into five sites. The consequence was a remarkable biomass which represented 220 tons of fresh weight (average 15.53 g m−2) and high abundance levels reaching over 156 million individuals. The distribution of the species has also been investigated in consideration with the size which varies markedly according to location, while the shell length ranged between 6 and 29 mm. Additional factors influencing the population distribution are discussed and it is concluded that bottom characteristics, food potential (organic matter content of the sediment, phytoplankton rates and seagrass organic matter) and physicochemical factors were the fundamental factors controlling the spatial distribution of C. glaucum.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansell, A.D., Barnett, P.R.O., Bodoy, A. and Masse, H. (1981) Upper temperature tolerances of some European Molluscs. 3. Cardium glaucum, C. tuberculatum and C. edule. Marine Biology, 65, 177183.CrossRefGoogle Scholar
Baric, A. and Branica, M. (1967) Polarography of seawater I. Ionic state of cadmium and zinc in sea water. I. Journal of Polarographic Science 13, 48.Google Scholar
Bamber, R.N. (2003) Temporal variation and monitoring of important lagoonal communities and species in Wales. Marine Monitoring Report, no. FC 73-02-0225 C. 28 pp.Google Scholar
Barnes, R.S.K. (1973) The intertidal lamellibranches of Southampton Water, with particular reference to Cerastoderma edule and C. glaucum. Proceedings of the Malacological Society 40, 413433.Google Scholar
Barnes, R.S.K. (1980) Coastal lagoons. The natural history of a neglected habitat. Cambridge: Cambridge University Press.Google Scholar
Boyden, C.R. (1969) Ecology of the cockle Cardium glaucum Bruguière. Essex Naturalist, London 32, 223226.Google Scholar
Boyden, C.R. (1971) A comparative study of the reproductive cycles of the cockles Cerastoderma edule and C. glaucum. Journal of the Marine Biological Association of the United Kingdom 51, 605622.CrossRefGoogle Scholar
Breber, P. (1996) A bio-index for the quality of Mediterranean lagoons. In Ozhan, E. (ed.) Proceedings of the International Workshop on MED Black Sea ICZM. Sarigerme, Turkey. Ankara, Turkey: MEDCOAST Publications, METU, 3 pp.Google Scholar
Brock, V. (1979) Habitat selection of two congeneric bivalves, Cardium edule and Cardium glaucum in sympatric and allopatric populations. Marine Biology 54, 149156.CrossRefGoogle Scholar
Brock, V. (1980) The geographical distribution of Cerastoderma (Cardium) edule (L.) and Cerastoderma lamarcki (Reeve) in the Baltic and adjacent seas related to salinity and related salinity fluctuations. Ophelia 19, 207214.CrossRefGoogle Scholar
Brock, V. (1982) Does displacement of spawning time occur in the sibling species Cerastoderma edule and C. lamarki? Marine Biology 67, 3338.CrossRefGoogle Scholar
Brock, V. (1991) An interdisciplinary study of evolution in the cockles Cardium (Cerastoderma) edule, C. glaucum, and C. lamarcki. Vinderup, Denmark: Vestjydsk Forlag.Google Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell Scientific Publications, pp. 4165.Google Scholar
Chintiroglou, C.C., Antoniadou, C. and Damianidis, P. (2000) Spatial dispersion and density of the Paranemonia vouliagmeniensis population in Vouliagmeni Lagoon. Journal of the Marine Biological Association of the United Kingdom 80, 941942.CrossRefGoogle Scholar
De Grave, S., Moore, S.J. and Burnell, G. (1998) Changes in benthic macrofauna associated with intertidal oyster Crassostrea gigas (Thunberg) culture. Journal of Shellfish Research 17, 11371142.Google Scholar
Gontikaki, E., Antoniadou, C. and Chintiroglou, C.C. (2003) Population structure of Cerastoderma glaucum and Abra ovata in Vouliagmeni Lagoon (Attiki). Journal of the Marine Biological Association of the United Kingdom 83, 10951097.Google Scholar
Gulland, J.A. (1969) Manuel des méthodes d'évaluation des stocks d'animaux aquatiques. Première partie: analyse des populations. Manuels FAO des Sciences Halieutiques, no. 4, FRS/M4.Google Scholar
Hamza, A. (2003) Le statut du phytoplancton dans le golfe de Gabès. Thèse de Doctorat, Université de Sfax, Tunisie.Google Scholar
Kobina, Y. (1986) Observations on byssus systems in the spat of Cerastoderma glaucum and C. edule. Journal of the Marine Biological Association of the United Kingdom 66, 277292.Google Scholar
Labourg, P.J. and Lasserre, G. (1980) Dynamique des populations de Cerastoderma glaucum dans une lagune aménagée de la région d'Arcachon. Marine Biology 60, 147157.CrossRefGoogle Scholar
Machreki-Ajmi, M. and Hamza-Chaffai, A. (2006) Accumulation of cadmium and lead in Cerastoderma glaucum originating from the Gulf of Gabès, Tunisia. Bulletin of Environmental Contamination and Toxicology 76, 529–37.CrossRefGoogle ScholarPubMed
Machreki-Ajmi, M., Ketata, I., Ladhar-Chaabouni, R. and Hamza-Chaffai, A. (2008) The effect of in situ cadmium contamination on some biomarkers in Cerastoderma glaucum. Ecotoxicology 17, 111.CrossRefGoogle ScholarPubMed
Matozzo, V. and Marin, M.G. (2007) First evidence of altered vitellogenin-like protein levels in clam Tapes philippinarum and in cockle Cerastoderma glaucum from the Lagoon of Venice. Marine Pollution Bulletin 55, 494504.CrossRefGoogle ScholarPubMed
McArthur, V.E. (1996) The ecology of East Anglian coastal lagoons. PhD thesis, University of Cambridge, Cambridge.Google Scholar
McArthur, V.E. (1998) Predation and the survival of juvenile Cerastoderma glaucum Bruguière (Mollusca: Bivalvia) in a coastal lagoon. Journal of Experimental Marine Biology and Ecology 225, 7997.CrossRefGoogle Scholar
Rygg, B. (1970) Studies on Cerastoderma edule (L.) and Cerastoderma glaucum (Poiret). Sarsia 4, 6580.CrossRefGoogle Scholar
Sarà, G. (2007) Sedimentary and particulate organic matter: mixed sources for cockle Cerastoderma glaucum in a shallow pond, western Mediterranean. Aquatic Living Resource 20, 271277.CrossRefGoogle Scholar
Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A. and Souvermezoglou, C. (1997) The Hellenic Seas: physics, chemistry, biology and fisheries. Oceanography and Marine Biology: an Annual Review 35, 415538.Google Scholar
Trotta, P. and Cordisco, C.A. (1998) Gonadal maturation, conditioning, and spawning in the laboratory and maturation cycle in the wild of Cerastoderma glaucum Bruguière. Journal of Shellfish Research 17, 919923.Google Scholar
Urban, H.J. (1996) Population dynamics of the bivalves Venus antiqua, Tagelus dombeyi and Ensis macha from Chile at 36°S. Journal of Shellfish Research 15, 719727.Google Scholar
Wolowicz, M. (1984) Cardium glaucum (Poiret, 1789) population from Gdansk Bay (Baltic Sea). Polskie Archiwum Hydrobiologii 31, 3344.Google Scholar
Wolowicz, M. (1987) A comparative study of the reproductive cycle of cockles Cardium glaucum (Poiret, 1789) and C. hauniense (Petersen, Russell, 1971), (Bivalvia) from the Gdansk Bay. Polskie Archiwum Hydrobiologii 34, 91105.Google Scholar
Zaouali, J. (1974) Les peuplements malacologiques dans les biocoenoses lagunaires tunisiennes. Etude de l'espèce pionnière Cerastoderma glaucum Poiret. Thèse de Doctorat, Université de Caen, France.Google Scholar
Zaouali, J. (1975) Influence des facteurs thermiques et halines sur la fauna malacologique de quelques lagunes tunisiennes (lac Ichkeul, lac de Bizerte, lac de Tunis, mer de Bou Grara). Rapport de la Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée 23, 99101.Google Scholar
Zaouali, J. (1978) Les peuplements malacologiques de la mer de Bou Ghgrara. Bulletin de l'Office National des Pêches, Tunisie 2, 199209.Google Scholar
Zaouali, J. (1980) Étude du cycle sexuel de Cerastoderma glaucum (Poiret, 1789) (Bivalvia, Eulamellibranchia, Cardiidae) dans la mer de Bou Ghrara (Tunisie). Archives de l'Institut Pasteur de Tunis 57, 281295.Google Scholar