Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:41:17.020Z Has data issue: false hasContentIssue false

Genetic survey of loggerhead turtle Caretta caretta nesting population in Tunisia

Published online by Cambridge University Press:  15 March 2010

Olfa Chaieb*
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources UR03ES09, Institut Supérieur de Biotechnologie de Monastir, Tunisie Laboratoire de Biodiversité et Biotechnologie Marines, Institut National des Sciences et Technologies de la Mer, Tunisie
Ali El Ouaer
Affiliation:
Laboratoire de Biodiversité et Biotechnologie Marines, Institut National des Sciences et Technologies de la Mer, Tunisie
Fulvio Maffucci
Affiliation:
Stazione Zoologica ‘Anton Dohrn’, Villa Communale, Napoli, Italy
Mohamed Nejmeddine Bradai
Affiliation:
Laboratoire de Biodiversité et Biotechnologie Marines, Institut National des Sciences et Technologies de la Mer, Tunisie
Flegra Bentivegna
Affiliation:
Stazione Zoologica ‘Anton Dohrn’, Villa Communale, Napoli, Italy
Khaled Said
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources UR03ES09, Institut Supérieur de Biotechnologie de Monastir, Tunisie
Noureddine Chatti
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources UR03ES09, Institut Supérieur de Biotechnologie de Monastir, Tunisie
*
Correspondence should be addressed to: Olfa Chaieb, Laboratoire de Biodiversité et Biotechnologie Marìnes, Institut National des Sciences et Technologies de la Mer, BP 59, Route de Khniss, Monastir 5000 email: [email protected]
Get access

Abstract

Genetic diversity of loggerhead turtles, Caretta caretta, nesting on the Kuriat Islands, the most important Tunisian nesting beach (central Mediterranean), was investigated using both nuclear and mitochondrial markers. Allozyme electrophoresis of 63 hatchlings from four different clutches showed a low genetic diversity. The genotypic composition of two clutches did not match Mendelian expectations suggesting the occurrence of multiple paternity. The analysis of 380 bp of the mitochondrial DNA control region revealed no genetic variability. Only one haplotype was described in our sample (N = 16), which corresponds to the sequence of the most common haplotype found on the Mediterranean nesting beaches (CC-A2). The low genetic diversity detected by both mitochondrial and allozyme markers is discussed taking into account available data about past and present situations of loggerhead nesting activity in this site. Adequate conservation measures should be urgently taken to protect the nesting population in this area.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. and Bonhomme, F. (2001) GENETIX, Logiciel sous Windows TM pour la Génétique des Populations. Laboratoire Génome et Populations, Interactions, Adaptations, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.Google Scholar
Bonhomme, F., Salvidio, S., Lebeau, A. and Pasteur, G. (1987) Comparaison génétique des tortues vertes (Chelonia mydas) des océans atlantique, Indien et Pacifique: une illustration de la théorie mullerienne classique de la structure génétique des populations. Genetica 74, 8994.Google Scholar
Bowen, B.W., Avise, J.C., Richardson, J.I., Meylan, A.B., Margaritoulis, D. and Hopkins-Murphy, S. (1993) Population structure of the loggerhead turtle (Caretta caretta) in the northwest Atlantic Ocean and Mediterranean Sea. Conservation Biology 7, 834844.Google Scholar
Bradai, M.N. (1995) La nidification de la tortue marine Caretta caretta dans le Sud-Est de la Tunisie. Rapport de la Commission Internationale de la Mer Méditerranée 34, 237.Google Scholar
Bradai, M.N. (1996) La nidification de la tortue marine Caretta caretta aux Îles Kuriat. Bulletin de l'Institut National des Sciences et Technologies de la Mer, numéro spécial 3, 6871.Google Scholar
Bradai, M.N. and Jribi, I. (2007) Monitoring du site de ponte de la tortue marine Caretta caretta aux Îles Kuriat, campagne 2007. INSTM, UNEP, MAP, RAC/SPA, 15 p.Google Scholar
Bradai, M.N., Karaa, S., Jribi, I., Elouaer, A., Chaieb, O., Elhili, H., Ben Naceur, L. and Maatoug, K. (2008) Rapport relatif au réseau national d'échouages des tortues marines et des cétacés: Bilan 2006–2007. INSTM, 53 pp.Google Scholar
Carreras, C., Pascual, M., Cardona, L., Aguilar, A., Margaritoulis, D., Rees, A., Turkozan, O., Levy, Y., Gasith, A., Aureggi, M. and Khalil, M. (2007) The genetic structure of loggerhead sea turtle (Caretta caretta) in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implications. Conservation Genetics 8, 761775.CrossRefGoogle Scholar
Crim, J.L., Spotila, L.D., Spotila, J.R., O'Connor, M., Reina, R., Williams, C.J. and Paladino, F.V. (2002) The leatherback turtle, Dermochelys coriacea , exhibits both polyandry and polygyny. Molecular Ecology 11, 20972106.CrossRefGoogle ScholarPubMed
Dodd, C.K. (1988) Synopsis of the biological data on the loggerhead sea turtle Caretta caretta (Linnaeus 1758). US Fish and Wildlife Service. Biological Report, no. 88, 110 pp.Google Scholar
Encalada, S.E., Bjorndal, K.A., Bolten, A.B., Zurita, J.C., Schroeder, B., Possardt, E., Sears, C.J. and Bowen, B.W. (1998) Population structure of loggerhead turtle (Caretta caretta) nesting colonies in the Atlantic and Mediterranean regions as inferred from mtDNA control region sequences. Marine Biology 130, 567575.CrossRefGoogle Scholar
Fitzsimmons, N. (1998) Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology 7, 575584.CrossRefGoogle ScholarPubMed
Fitzsimmons, N., Moritz, C. and Bowen, B.W. (1999) Population identification. In Eckert, K.L., Bjorndal, K.A., Abreu-Grobois, F.A. and Donnelly, M. (eds) Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication, no. 4, pp. 7279.Google Scholar
Formia, A. (2002) Population and genetic structure of the green turtle (Chelonia mydas) in West and Central Africa: implications for management and conservation. PhD thesis. University of Cardiff, Wales, UK.Google Scholar
Garofalo, L., Mingozzi, T., Micò, A. and Novelletto, A. (2009) Loggerhead turtle (Caretta caretta) matrilines in the Mediterranean: further evidence of genetic diversity and connectivity. Marine Biology 156, 20852095.CrossRefGoogle Scholar
Gyuris, E. and Limpus, C.J. (1988) The loggerhead turtle Caretta caretta in Queensland: population breeding structure. Australian Journal of Wildlife Research 15, 197209.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hillis, D.M., Mable, B.K., Larson, A., Davis, S.K. and Zimmer, E.A. (1996) Nucleic acids IV: sequencing and cloning. In Hillis, D.M., Moritz, C. and Mable, B.K. (eds) Molecular systematics. Sunderland, MA: Sinauer Associates, pp. 321381.Google Scholar
Hoekert, W.E.J., Neuféglise, H., Schouten, A.D. and Menken, S.B.J. (2002) Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity 89, 107113.CrossRefGoogle Scholar
Ireland, J.S., Broderick, A.C., Glen, F., Godley, B.J., Hays, G.C., Lee, P.L.L. and Skibinski, D.O.F. (2003) Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, South Atlantic. Journal of Experimental Marine Biology and Ecology 291, 149160.CrossRefGoogle Scholar
IUCN (2007) 2007 IUCN Red List of threatened species. www.iucnredlist.org.Google Scholar
Jensen, M.P., Abreu-Grobois, F.A., Frydenberg, J. and Loeschcke, V. (2006) Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Molecular Ecology 15, 25672575.CrossRefGoogle ScholarPubMed
Jribi, I., Bradai, M.N. and Bouain, A. (2002) Marine turtle nesting in Kuriat islands, Tunisia, 2000. Marine Turtle Newsletter 96, 46.Google Scholar
Jribi, I., Bradai, M.N. and Bouain, A. (2006) Loggerhead turtle nesting activity in Kuriat Islands (Tunisia): assessment of nine years monitoring. Marine Turtle Newsletter 112, 1213.Google Scholar
Laurent, L., Casale, P., Bradai, M.N., Godley, B.J., Gerosa, G., Broderick, A.C., Schroth, W., Schierwater, B., Levy, A.M., Freggi, D., Abd El-Mawla, E.M., Hadoud, D.A., Gomati, H.E., Domingo, M., Hadjichristophorou, M., Kornaraky, L., Demirayak, F. and Gautier, C.H. (1998) Molecular resolution of the marine turtle stock composition in fishery by-catch: a case study in the Mediterranean. Molecular Ecology 7, 5291542.CrossRefGoogle Scholar
Lee, P.L.M. and Hays, G.C. (2004) Polyandry in a marine turtle: females make the best of a bad job. Proceedings of the National Academy of Sciences of the United States of America 101, 65306535.CrossRefGoogle Scholar
Margaritoulis, D., Argano, R., Baran, I., Bentivegna, F., Bradai, M.N., Caminas, J.A., Casale, P., De Metrio, G., Demetropoulos, A., Gerosa, G., Godley, B., Houghton, J., Laurent, L. and Lazar, B. (2003) Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. In Bolten, A.B. and Witherington, B.E. (eds) Loggerhead sea turtles. Washington, DC: Smithsonian Institution Press, pp. 175198.Google Scholar
Murphy, R.W. and Crabtree, C.B. (1985) Evolutionary aspects of isozyme patterns, number of loci, and tissue-specific gene expression in the prairie rattlesnake, Crotalus viridis. Herpetologica 41, 451470.Google Scholar
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. and Britton-Davidian, J. (1987) Manuel technique de génétique par électrophorèse des protéines. Paris: Lavoisier.Google Scholar
Raymond, M. and Rousset, F. (1995) An exact test of population differentiation. Evolution 49, 12801283.CrossRefGoogle ScholarPubMed
Rieder, J.P., Parker, P.G., Spotila, J.R. and Irwin, M.E. (1998) The mating system of the leatherback turtle: a molecular approach. In Byles, R. and Fernandez, Y. (eds) Proceedings of the Sixteenth Annual Symposium on Sea Turtle Biology and Conservation, NOAA Technical Memorandum NMFS-SEFSC-412. Springfield, VA: National Technical Information Service, pp. 120121.Google Scholar
Schneider, S., Roesslli, D. and Excoffier, L. (2000) Arlequin v. 2.000. A software for population genetics data analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.Google Scholar
Schroth, W., Streit, B. and Schierwater, B. (1996) Evolutionary handicap for turtles. Nature 384, 521522.Google Scholar
Stockley, P., Searle, J.B., Macdonald, D.W. and Jones, C.S. (1993) Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding. Proceedings of the Royal Society B 254, 173179.Google Scholar
Theissinger, K., Fitzsimmons, N. and Seitz, A. (2006) Mating system in the flatback turtle—a microsatellite analysis. In Frick, M., Panagopoulou, A., Rees, A.F. and Williams, K. (eds) Twenty-sixth Annual Symposium on Sea Turtle Biology and Conservation, Athens, Greece. International Sea Turtle Society, pp. 120121.Google Scholar
Vala, F., Breeuwer, J.A.J. and Sabelis, M.W. (2000) Wolbachia-induced hybrid breakdown in the two spotted spider mite Tetranychus urticae Koch. Proceedings of the Royal Society B 267, 19311937.Google Scholar
Zbinden, J.A., Largiadèr, C.R., Leippert, F., Margaritoulis, D. and Arlettaz, R. (2007) High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Molecular Ecology 16, 37033711.CrossRefGoogle ScholarPubMed