Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T06:50:36.390Z Has data issue: false hasContentIssue false

First records of Amphidoma languida and Azadinium dexteroporum (Amphidomataceae, Dinophyceae) from the Irminger Sea off Iceland

Published online by Cambridge University Press:  02 October 2015

Urban Tillmann*
Affiliation:
Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
Marc Gottschling
Affiliation:
Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Straße 67, D-80638 München, Germany
Elisabeth Nézan
Affiliation:
Ifremer, Station de Biologie Marine, Place de la Croix, BP 40537, 29185 Concarneau Cedex, France
Bernd Krock
Affiliation:
Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
*
Correspondence should be addressed to: U. Tillmann, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany email: [email protected]
Get access

Abstract

Species of dinophycean Amphidomataceae are producers of phycotoxins classified as azaspiracids. We provide the first records of two of their constituent species, Amphidoma languida and Azadinium dexteroporum, for the Irminger Sea off Iceland. Morphological examination and molecular characterization, including uncorrected mean pairwise distances between sequences of the Internal Transcribed Spacer (ITS), doubtlessly assigned the sub-Arctic strain 2A11 to the reference of Amphidoma languida. Strain 2A11 produced AZA-38 and AZA-39, corresponding to the toxin profile described for the type material. The sub-Arctic isolate 1D12 differed significantly in terms of ITS genetic distance (p = 0.04) from a Mediterranean Azadinium dexteroporum strain, but our morphological analysis did not reveal any major or stable diagnostic traits between the reference strain of Azadinium dexteroporum and the new strain described here. In contrast to the Mediterranean strain of Azadinium dexteroporum, the sub-Arctic strain 1D12 did not produce any known azaspiracids. The new records of Amphidoma languida and Azadinium dexteroporum from the Irminger Sea imply an important range extension of the species, formerly known from the northern and eastern Atlantic (Amphidoma languida) and from the Mediterranean area (Azadinium dexteroporum) only. Together with three new species of Azadinium recently described from the same expedition, the results clearly show that the biodiversity of the Amphidomataceae in the sub-Arctic is remarkably large.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akselman, R. and Negri, A. (2012) Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic. Harmful Algae 19, 3038.Google Scholar
Bérard-Therriault, L., Poulin, M. and Bossé, L. (1999) Guide d'identification du phytoplancton marin de l'estuaire et du golfe de Saint-Laurent incluant également certaines protozoaires. Publication spéciale canadienne des sciences halieutiques et aquatiques 128, 1387.Google Scholar
Brandt, K. and Apstein, C. (1908) Nordisches Plankton. Kiel, Leipzig: Lipsius & Tischer.Google Scholar
Cleve, P.T. (1873) On diatoms of the Arctic Sea. Bihang Kongelige Svenska Vetenskapelige Akademie Handlingar 1, 128.Google Scholar
Cleve, P.T. and Grunow, A. (1880) Beiträge zur Kenntniss der arktischen Diatomeen. Kongiga Svenska Vetenskaps-Akademiens Handlingar 17, 1122.Google Scholar
Comiso, J.C., Parkinson, C.L., Gersten, R. and Stock, L. (2008) Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35, L01703.Google Scholar
Ehrenberg, C.G. (1843) Über neue Anschauungen des kleinsten nördlichen Polarlebens. Deutsche Akademie der Wissenschaften zu Berlin Monatsberichte 1843, 522529.Google Scholar
Gottschling, M. and Plötner, J. (2004) Secondary structure models of the nuclear Internal Transcribed Spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Research 32, 307315.Google Scholar
Grontved, J. and Seidenfaden, G. (1938) The phytoplankton of the waters west of Greenland. Meddelelser om Grønland 82, 1380.Google Scholar
Gu, H., Luo, Z., Krock, B., Witt, M. and Tillmann, U. (2013) Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea. Hamful Algae 21–22, 6475.Google Scholar
Halldal, P. (1953) Phytoplankton investigations from Weather Ship M in the Norwegian Sea, 1948–49. Hvalrådets Skrifter 38, 191.Google Scholar
Hallegraeff, G.M. (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46, 220235.CrossRefGoogle Scholar
Hernández-Becerril, D.U., Barón-Campis, S.A. and Escobar-Morales, S. (2012) A new record of Azadinium spinosum (Dinoflagellata) from the tropical Mexican Pacific. Revista de Biología Marina y Oceanografía 47, 553557.Google Scholar
Holmes, R.W. (1956) The annual cycle of phytoplankton in the Labrador Sea, 1950–1951. Bulletin of the Bingham Oceanographic Collection 16, 174.Google Scholar
Keller, M.D., Selvin, R.C., Claus, W. and Guillard, R.R.L. (1987) Media for the culture of oceanic ultraphytoplankton. Journal of Phycology 23, 633638.Google Scholar
Kremp, A., Tahvanainen, P., Litaker, W., Krock, B., Suikkanen, S., Leaw, C.P. and Tomas, C. (2014) Phylogenetic relationships, morphological variation, and toxin pattern in the Alexandrium ostenfeldii (Dinopyhceae) complex: implications for species boundaries and identities. Journal of Phycology 50, 81100.CrossRefGoogle ScholarPubMed
Kretschmann, J., Elbrächter, M., Zinßmeister, C., Söhner, S., Kirsch, M., Kusber, W.-H. and Gottschling, M. (2015) Taxonomic clarification of the dinophyte Peridinium acuminatum Ehrenb., ≡ Scrippsiella acuminata comb. nov. (Thoracosphaeraceae, Peridiniales). Phytotaxa 220, 239256.Google Scholar
Kretschmann, J., Zinßmeister, C. and Gottschling, M. (2014) Taxonomic clarification of the dinophyte Rhabdosphaera erinaceus Kamptner, ≡ Scrippsiella erinaceus comb. nov. Thoracosphaeraceae, Peridiniales. Systematics and Biodiversity 12, 393404.Google Scholar
Krock, B., Tillmann, U., John, U. and Cembella, A.D. (2009) Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae 8, 254263.CrossRefGoogle Scholar
Krock, B., Tillmann, U., Voß, D., Koch, B.P., Salas, R., Witt, M., Potvin, E. and Jeong, H.J. (2012) New azaspiracids in Amphidomataceae (Dinophyceae): proposed structures. Toxicon 60, 830839.CrossRefGoogle Scholar
Krock, B., Tillmann, U., Witt, M. and Gu, H. (2014) Azaspiracid variability of Azadinium poporum (Dinophyceae) from the China Sea. Harmful Algae 36, 2228.Google Scholar
Lebour, M.V. (1925) The dinoflagellates of the northern seas. Plymouth: Marine Biological Association of the UK.Google Scholar
Lewis, J. and Dodge, J.D. (1990) The use of the SEM in dinoflagellate taxonomy. In Claugher, D. (ed.) Scanning electron microscopy in Taxonomy and functional morphology, Special Vol. 41. Oxford: Clarendon Press, The Systematics Association, pp. 125148.Google Scholar
Litaker, R.W., Vandersea, M.W., Kibler, S.R., Reece, K.S., Stokes, N.A., Lutzoni, F.M., Yonish, B.A., West, M.A., Black, M.N.D. and Tester, P.A. (2007) Recognizing dinoflagellate species using ITS rDNA sequences. Journal of Phycology 43, 344355.Google Scholar
Luo, Z., Gu, H., Krock, B. and Tillmann, U. (2013) Azadinium dalianense, a new dinoflagellate from the Yellow Sea, China. Phycologia 52, 625636.Google Scholar
Nézan, E., Tillmann, U., Bilien, G., Boulben, S., Chèze, K., Zentz, F., Salas, R. and Chomérat, N. (2012) Taxonomic revision of the dinoflagellate Amphidoma caudata: transfer to the genus Azadinium (Dinophyceae) and proposal of two varieties, based on morphological and molecular phylogenetic analyses. Journal of Phycology 48, 925939.Google Scholar
Okolodkov, Y.B. and Dodge, J.D. (1996) Biodiversity and biogeography of planktonic dinoflagellates in the Arctic Ocean. Journal of Experimental Marine Biology and Ecology 202, 1927.CrossRefGoogle Scholar
Percopo, I., Siano, R., Rossi, R., Soprano, V., Sarno, D. and Zingone, A. (2013) A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. Journal of Phycology 49, 950966.CrossRefGoogle ScholarPubMed
Potvin, E., Jeong, H.J., Kang, N.S.T., Tillmann, U. and Krock, B. (2012) First report of the photosynthetic dinoflagellate genus Azadinium in the Pacific Ocean: morphology and molecular characterization of Azadinium cf. poporum. Journal of Eukaryotic Microbiology 59, 145156.CrossRefGoogle ScholarPubMed
Poulin, M., Daugbjerg, N., Gradinger, R., Ilyash, L., Ratkova, T. and von Quillfeldt, C. (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Marine Biodiversity 41, 1328.Google Scholar
Ramsfjell, E. (1959) Two new phytoplankton species from the Norwegian Sea, the diatom Coscinosira poroseriata, and the dinoflagellate Gonyaulax parva. Nytt Magasin for Botanikk 7, 175177.Google Scholar
Salas, R., Tillmann, U., John, U., Kilcoyne, J., Burson, A., Cantwell, C., Hess, P., Jauffrais, T. and Silke, J. (2011) The role of Azadinium spinosum (Dinophyceae) in the production of Azasdpiracid Shellfish Poisoning in mussels. Harmful Algae 10, 774783.Google Scholar
Screen, J.A. and Simmonds, I. (2012) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 13341337.Google Scholar
Swofford, D.L. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. Sunderland, MA: Sinauer Associates.Google Scholar
Thornhill, D.J. and Lord, J.B. (2010) Secondary structure models for the Internal Transcribed Spacer (ITS) region 1 from symbiotic dinoflagellates. Protist 161, 434451.Google Scholar
Tillmann, U. and Elbrächter, M. (2010) Plate overlap pattern of Azadinium spinosum Elbrächter et Tillmann (Dinophyceae), the newly discovered primary source of azaspiracid toxins. In Ho, K.C., Zhou, M.J. and Qi, Y.Z. (eds) Proceedings of the 13th International Conference on Harmful Algae. Hong Kong: Environmental Publication house, pp. 4244.Google Scholar
Tillmann, U. and Elbrächter, M. (2013) Cell division in Azadinium spinosum (Dinophyceae). Botanica Marina 56, 399408.Google Scholar
Tillmann, U., Elbrächter, M., Krock, B., John, U. and Cembella, A. (2009) Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. European Journal of Phycology 44, 6379.CrossRefGoogle Scholar
Tillmann, U., Elbrächter, M., John, U., Krock, B. and Cembella, A. (2010) Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia 49, 169182.Google Scholar
Tillmann, U., Elbrächter, M., John, U. and Krock, B. (2011) A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov. European Journal of Phycology 46, 7487.CrossRefGoogle Scholar
Tillmann, U., Gottschling, M., Nézan, E., Krock, B. and Bilien, G. (2014) Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist 165, 417444.CrossRefGoogle ScholarPubMed
Tillmann, U., Söhner, S., Nézan, E. and Krock, B. (2012a) First record of Azadinium from the Shetland Islands including the description of A. polongum sp. nov. Harmful Algae 20, 142155.Google Scholar
Tillmann, U., Salas, R., Gottschling, M., Krock, B., O'Driscoll, D. and Elbrächter, M. (2012b) Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship between Amphidoma and Azadinium. Protist 163, 701719.Google Scholar
Wassmann, P., Duarte, C.M., Agustí, S. and Sejr, M.K. (2011) Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17, 12351249.Google Scholar
Zinßmeister, C., Söhner, S., Facher, E., Kirsch, M., Meier, K.J.S. and Gottschling, M. (2011) Catch me if you can: the taxonomic identity of Scrippsiella trochoidea (F. Stein) A.R. Loebl (Thoracospaeraceae, Dinophyceae). Systematics and Biodiversity 9, 145157.CrossRefGoogle Scholar