Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T14:01:23.073Z Has data issue: false hasContentIssue false

Distribution of Lucinoma heroica (Mollusca: Bivalvia: Lucinidae) in the minimum oxygen zone in the Gulf of California, Mexico

Published online by Cambridge University Press:  29 August 2012

Pablo Zamorano*
Affiliation:
Instituto Nacional de Ecología, Periférico Sur 5000, Colonia Insurgentes Cuicuilco, Delegación Coyoacán, D.F., 04530, Mexico
Michel E. Hendrickx
Affiliation:
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, 82000, Mexico
*
Correspondence should be adressed to: P. Zamorano, Departamento de Ecología de Comunidades, Instituto Nacional de Ecología, Periférico Sur 5000, Colonia Insurgentes Cuicuilco, Delegación Coyoacán, Mexico, D.F. 04530 email: [email protected]
Get access

Abstract

From samples taken during the oceanographic cruises TALUD IV–X in the southern and central Gulf of California, Mexico, 291 specimens of Lucinoma heroica were obtained in a depth interval of 731 to 991 m. The species occurred under conditions of severe (<0.1 ml l−1O2) and moderate hypoxia (0.1–0.5 ml l−1O2). The correlation between height and length of the shell showed isometric growth with a trimodal size distribution, showing an average interval of 3.75 mm to 47.40 mm in height and 4.96 mm to 54.00 mm in length. Small individuals (≤20 mm) were distributed in a moderate hypoxic environment, while the larger (>35 mm) tolerated an almost anoxic habitat. Medium-sized specimens (21–35 mm) were found in concentration close to 0.2 ml l−1O2. Average density was 1.532 ind l−1 in infauna samples (dredge and core) and 0.002 ind m−2 in epifauna samples (benthic sledge).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BSF (2010) Lucinoma (genus). Bay Science Foundation. Available at www.zipcodezoo.com (accessed 4 July 2011).Google Scholar
Childress, J.J. (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends in Ecology and Evolution 10, 3036.CrossRefGoogle ScholarPubMed
Childress, J.J. and Seibel, B.A. (1998) Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. Journal of Experimental Biology 201, 12231232.CrossRefGoogle ScholarPubMed
Coan, E.V. and Valentich-Scott, P. (2012) Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara Museum of Natural History Monographs Number 6 Studies in Biodiversity Number 4.Google Scholar
Dall, W.H. (1901) Synopsis of the Lucinacea and of the American species. Proceedings of the United States National Museum 23, 779833.CrossRefGoogle Scholar
Dando, P.R., Southward, A.J. and Southward, E.C. (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proceedings of the Royal Society, B: Biological Sciences 227, 227247.Google Scholar
Díaz, R.J. and Rosenberg, R. (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: an Annual Review 33, 244303.Google Scholar
Glémarec, M. (1964) Bionomie Benthique de la partie orientale du golfe de Morbihan. Cahiers de Biologie Marine 5, 3396.Google Scholar
Grassle, J.F. (1989) Species diversity in deep-sea communities. Trends in Ecology and Evolution 4, 1215.CrossRefGoogle ScholarPubMed
Helly, J.J. and Levin, L.A. (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I: Oceanographic Research Papers 51, 11591168.CrossRefGoogle Scholar
Hendrickx, M.E. (1993) Crustáceos decápodos del Pacífico mexicano. In Salazar-Vallejo, S.I. and Gonzalez, N.E. (eds) Biodiversidad marina y costera de México. Mexico: CONABIO y CIQRO, pp. 271318.Google Scholar
Hendrickx, M.E. (2001) Occurrence of a continental slope decapod crustacean community along the edge of the minimum oxygen zone in the south eastern Gulf of California, Mexico. Belgian Journal of Zoology 131, 95109.Google Scholar
Hendrickx, M.E. (2012) Operaciones oceanográficas en aguas profundas: los retos del pasado, del presente y del proyecto TALUD en el Pacífico mexicano (1989–2009). In Zamorano, P., Hendrickx, M.E. and Caso-Chavez, M. (eds) Biodiversidad y comunidades del talud continental del Pacífico mexicano. Mexico: INE-SEMARNAT, pp. 23119.Google Scholar
Hendrickx, M.E. and Serrano, D. (2010) Impacto de la zona de mínimo oxígeno sobre los corredores pesqueros en el Pacífico mexicano. Interciencia 35, 1218.Google Scholar
Hendrickx, M.E., Van Der Heiden, A.M. and Toledano-Granados, A. (1984) Resultados de las campañas SIPCO (sur de Sinaloa, México) a bordo del B/O ‘El Puma’. Hidrología y composición de las capturas efectuadas en los arrastres. Anales del Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México 2, 107122.Google Scholar
Keen, A.M. (1971) Sea shells of tropical West America: marine mollusk from Baja California to Peru. Stanford, CA: Stanford University Press.Google Scholar
Kröncke, I. and Türkay, M. (2003) Structural and functional aspects of the benthic communities in the deep Angola Basin. Marine Ecology Progress Series 260, 4353.CrossRefGoogle Scholar
Lamont, P.A. and Gage, J.D. (2000) Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep-Sea Research Part II: Tropical Studies in Oceanography 47, 924.CrossRefGoogle Scholar
Lavin, M.F., Robles, J.M., Argote, M.L., Barton, E.D., Smith, R., Brown, J., Kosro, M., Trasviña, A., Velez, H.S. and Garca, J. (1992) Física del Golfo de Tehuantepec. Ciencia y Desarrollo 18, 97108.Google Scholar
Levin, L.A. (2002) Deep-ocean life where oxygen is scarce. American Scientist 90, 436444.CrossRefGoogle Scholar
Levin, L.A. and Gage, J.D. (1998) Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Research Part II: Tropical Studies in Oceanography 45, 129163.CrossRefGoogle Scholar
Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler, R.R. and Pawson, D. (2001) Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics 32, 5193.CrossRefGoogle Scholar
Lluch-Cota, S., Alvarez-Borrego, S., Santamaria del Angel, E.M., Müller-Karger, F.E. and Hernandez-Vazquez, S. (1997) Gulf of Tehuantepec and adjacent areas: spatial and temporal variation of satellite derived photosynthetic pigments. Ciencias Marinas 23, 329340.CrossRefGoogle Scholar
Longwell, C.R. and Flint, R.F. (1981) Geología física. Mexico: Editorial Limusa.Google Scholar
McClain, C.R. (2004) Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology and Biogeography 13, 327334.CrossRefGoogle Scholar
McClain, C.R. and Rex, M.A. (2001) The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression. Marine Biology 139, 681685.Google Scholar
Méndez, N. (2007) Relationships between deep-water polychaete fauna and environmental factors in the southeastern Gulf of California, Mexico. Scientia Marina 71, 605622.CrossRefGoogle Scholar
Olabarria, C. and Thurston, M.H. (2003) Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia barniciensis (King). Marine Biology 143, 723730.CrossRefGoogle Scholar
Olabarria, C. and Thurston, M.H. (2004) Patterns of morphological variation of the deep-sea gastropod Troschelia berniciensis (King, 1846) (Buccinidae) from the northeastern Atlantic Ocean. Journal of Molluscan Studies 70, 5966.CrossRefGoogle Scholar
Picard, J. (1965) Recherches qualitatiues sur les biocénoses marines des substrats meubles dragables de la région marseillaise. Recueil des Travaux de la Station Marine d'Endourne 36, 1160.Google Scholar
Ramirez, R., Paredes, C. and Arenas, J. (2003) Moluscos del Perú. Revista de Biología Tropical 51, 225284.Google Scholar
Rex, M.A., Stuart, C.T. and Coyne, G. (2000) Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America 97, 40824085.CrossRefGoogle ScholarPubMed
Ríos-Jara, E., López-Uriarte, E. and Galván-Villa, C.M. (2008) Bivalve molluscs from the continental shelf of Jalisco and Colima, Mexican Central Pacific. American Malacological Bulletin 26, 119131.CrossRefGoogle Scholar
Rogers, A.D. (2000) The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research Part II: Tropical Studies in Oceanography 47, 119148.CrossRefGoogle Scholar
Rosenberg, R., Arntz, W.E., Chuman de Flores, E., Flores, L.A., Carvajal, G., Finger, I. and Tarazona, J. (1983) Benthos biomass and oxygen deficiency in the upwelling system off Peru. Journal of Marine Research 41, 263279.CrossRefGoogle Scholar
Rosenberg, R., Hellman, B. and Johansson, B. (1991) Hypoxic tolerance of marine benthic fauna. Marine Ecology Progress Series 79, 127131.CrossRefGoogle Scholar
Scott, P.H., Hochberg, G. and Roth, B. (1990) Catalog of recent and fossil molluscan types in the Santa Barbara Museum of Natural History. I. Caudofoveata, Polyplacophora, Bivalvia, Scaphopoda, and Cephalopoda. Veliger 33, 127.Google Scholar
Seibold, E. and Berger, W.H. (1982) The sea floor: an introduction to marine geology. New York: Springer-Verlag.CrossRefGoogle Scholar
Skoglund, C. (2001) Panamic province molluscan literature: additions and changes from 1971 through 2000. I. Bivalvia. Festivus 32, 1119.Google Scholar
Smith, C.R., Levin, L.A. and Mullineaux, L.S. (1998) Deep-sea biodiversity: a tribute to Robert R. Hessler. Deep-Sea Research Part II: Tropical Studies in Oceanography 45, 111.CrossRefGoogle Scholar
Sturges, H.A. (1926) The choice of the class interval. Journal of the American Statistical Association 21, 6566.CrossRefGoogle Scholar
Taylor, J.D. and Glover, E.A. (2006) Lucinidae (Bivalvia)—the most diverse group of chemosymbiotic molluscs. Zoological Journal of the Linnean Society 148, 421438.CrossRefGoogle Scholar
Williams, S.T., Taylor, J.D. and Glover, E.A. (2004) Molecular phylogeny of the Lucinoidea (Bivalvia): non-monophyly and separate acquisition of bacterial chemosymbiosis. Journal of Molluscan Studies 70, 187202.CrossRefGoogle Scholar
Zamorano, P. and Hendrickx, M.E. (2009) Análisis latitudinal y batimétrico de la comunidad de moluscos de mar profundo en el Golfo de California, México. Brenesia 71/72, 4154.Google Scholar
Zamorano, P. and Hendrickx, M.E. (2011) State of the knowledge about the community of mollusks on both sides of the Baja California peninsula, Mexico: a comparative analysis. Cahiers de Biologie Marine 52, 1322.Google Scholar
Zamorano, P., Hendrickx, M.E. and Toledano-Granados, A. (2007a) Distribution and ecology of deep water mollusks from the continental slope, southeastern Gulf of California, Mexico. Marine Biology 150, 883892.CrossRefGoogle Scholar
Zamorano, P., Hendrickx, M.E. and Toledano-Granados, A. (2007b) New geographic and depth records for deep-water mollusks in the Gulf of California. Revista Mexicana de Biodiversidad 78, 311318.Google Scholar