Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-09T19:20:46.737Z Has data issue: false hasContentIssue false

Revisiting risky money

Published online by Cambridge University Press:  02 April 2025

Travis D. Nesmith*
Affiliation:
Quantitative Risk Analysis, Board of Governors of the Federal Reserve System, Washington, DC, USA

Abstract

Risk was incorporated into monetary aggregation over thirty-five years ago, using a stochastic version of the workhorse money-in-the-utility-function model. Nevertheless, the mathematical foundations of this stochastic model remain shaky. To firm the foundations, this paper employs richer probability concepts than Borel-measurability, enabling me to prove the existence of a well-behaved solution and to derive stochastic Euler equations. This measurability approach is less common in economics, possibly because the derivation of stochastic Euler equations is new. Importantly, the problem’s economics are not restricted by the approach. The results provide firm footing for the growing monetary aggregation under risk literature, which integrates monetary and finance theory. As crypto-currencies and stable coins garner attention, solidifying the foundations of risky money becomes more critical. The method also supports deriving stochastic Euler equations for any dynamic economics problem that features contemporaneous uncertainty about prices, including asset pricing models like capital asset pricing models and stochastic consumer choice models.

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akashi, H. and Nose, K.. (1975). On certainty equivalence of stochastic optimal control problem. International Journal of Control 21(5), 857863. 10.1080/00207177508922040 CrossRefGoogle Scholar
Aliprantis, C. D. and Border, K. C.. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3 edn. Heidelberg and New York: Springer. 10.1007/3-540-29587-9 Google Scholar
Alvarez, F. and Jermann, U. J.. (2004). Using asset prices to measure the cost of business cycles. Journal of Political Economy 112(6), 12231256. 10.1086/424738 CrossRefGoogle Scholar
Amman, H. (1996). Numerical methods for linear-quadratic models, In Handbook of Computational Economics, 587618. Elsevier. 10.1016/S1574-0021(96)01015-5 Google Scholar
Anderson, E. W., McGrattan, E. R., Hansen, L. P. and Sargent, T. J.. (1996). Mechanics of forming and estimating dynamic linear economies, In Handbook of Computational Economics, 171252. Elsevier. 10.1016/S1574-0021(96)01006-4 Google Scholar
Anderson, R. G., Jones, B. E. and Nesmith, T. D.. (1997). Monetary aggregation theory and statistical index numbers. Federal Reserve Bank St. Louis Review 79(1), 31. 10.20955/r.79.31-52 Google Scholar
Andrikopoulos, A. (2013). Compactness in the choice and game theories: a characterization of rationality. Economic Theory Bulletin 1(2), 105110. 10.1007/s40505-013-0002-8 CrossRefGoogle Scholar
Aruoba, S. B., Fernández-Villaverde, J. A. and Rubio-Ramírez, J. F.. (2006). Comparing solution methods for dynamic equilibrium economies. Journal of Economic Dynamics and Control 30(12), 24772508. 10.1016/j.jedc.2005.07.008 CrossRefGoogle Scholar
Bansal, R. and Coleman, W. J. II. (1996). A monetary explanation of the equity premium, term premium, and risk-free rate puzzles. Journal of Political Economy 104(6), 11351171. 10.1086/262056 CrossRefGoogle Scholar
Barnett, W. A. (1977). Pollak and Wachter on the household production function approach. Journal of Political Economy 85(5), 10731082. 10.1086/260623 CrossRefGoogle Scholar
Barnett, W. A. (1980). Economic monetary aggregates: An application of index number and aggregation theory. Journal of Econometrics 14(1), 1148. 10.1016/0304-4076(80)90070-6 CrossRefGoogle Scholar
Barnett, W. A. (1995). Exact aggregation under risk. In Barnett, W. A. (eds.), Social choice, welfare, and ethics: Proc. Eighth Int. Symp. Econ. Theory Econometrics, 353374, Cambridge University Press, International Symposia in Economic Theory and Econometrics.Google Scholar
Barnett, W. A. and Serletis, A.. (2000). The Theory of Monetary Aggregation, Contributions to Economic Analysis, Vol. 245, Amsterdam; New York and Oxford: Elsevier Science, North-Holland. 10.1108/S0573-8555 Google Scholar
Barnett, W. A. and Park, H.. (2024a). Have credit card services become important to monetary aggregation? An application of sign restricted Bayesian VAR. Journal of Applied Economics 27(1), 2321422. 10.1080/15140326.2024.2321422 CrossRefGoogle Scholar
Barnett, W. A. and Park, H. (2024b). Nonseparability of credit card services within Divisia monetary aggregates. Macroeconomic Dynamics 29, 128. 10.1017/S1365100524000245 Google Scholar
Barnett, W. A. and Xu, H.. (1998). Stochastic volatility in interest rates and nonlinearity in velocity. International Journal of Systems Science 29(11), 11891201. 10.1080/00207729808929608 Google Scholar
Barnett, W. A. and Liu, J.. (2019). User cost of credit card services under risk with intertemporal nonseparability. Journal of Financial Stability 42, 1835. 10.1016/j.jfs.2019.05.005 Google Scholar
Barnett, W. A., He, K. and He, J.. (2022). Consumption loan augmented Divisia monetary index and China monetary aggregation. Journal of Risk and Financial Management 15(10), 447. 10.3390/jrfm15100447 Google Scholar
Barnett, W. A. and Su, L.. (2019). Risk adjustment of the credit-card augmented Divisia monetary aggregates. Macroeconomic Dynamics 23(S1), 90114. 10.1017/S1365100518000160 Google Scholar
Barnett, W. A. and Su, L.. (2020). Financial firm production of inside monetary and credit card services: An aggregation theoretic approach. Macroeconomic Dynamics 24(1), 130160. 10.1017/S1365100518000767 Google Scholar
Barnett, W. A., Chauvet, M., Leiva-Leon, D. and Su, L. (2023). The credit-card-services augmented Divisia monetary aggregates. Journal of Money, Credit and Banking 56(5), 11631202. 10.1111/jmcb.13088 Google Scholar
Barnett, W. A., Hinich, M. J. and Yue, P.. (1991). Monitoring monetary aggregates under risk aversion. In Monetary Policy on the 75th Anniversary of the Federal Reserve System: Proceedings of the Fourteenth Annual Economic Policy Conference of the Federal Reserve Bank of St. Louis, Barnett, W. A., Hinich, M. J. and Yue, P.. (ed.), pp. 189222. 10.1007/978-94-011-3888-8_10 Google Scholar
Barnett, W. A., Hinich, M. J. and Yue, P.. (2000). The exact theoretical rational expectations monetary aggregate. Macroeconomic Dynamics 4(2), 197221. 10.1017/S1365100500015030 Google Scholar
Barnett, W. A., Han, Q. and Zhang, J.. (2021). Monetary services aggregation under uncertainty: a behavioral economics extension using Choquet expectation. Journal of Economic Behavior & Organization 182, 437447. 10.1016/j.jebo.2019.03.026 CrossRefGoogle Scholar
Barnett, W. A. and Park, S.. (2023). Forecasting inflation and output growth with credit-card-augmented Divisia monetary aggregates. Journal of Forecasting 42(2), 331346. 10.1002/for.2910 Google Scholar
Barnett, W. A. and Wu, S.. (2005). On user costs of risky monetary assets. Annals of Finance 1(1), 3550. 10.1007/s10436-004-0003-6 Google Scholar
Barnett, W. A. and Liu, Y.. (2000). Beyond the risk neutral utility function. In Barnett, W. A. and Liu, Y.. (eds.), Divisia Monetary Aggregates: Theory and Practice, 1127. London: Palgrave. chapter 1, 10.1057/9780230288232 Google Scholar
Barnett, W. A., Liu, Y. and Jensen, M.. (1997). CAPM risk adjustment for exact aggregation over financial assets. Macroeconomic Dynamics 1(2), 485512. 10.1017/S136510059700308 Google Scholar
Basak, S. and Gallmeyer, M.. (1999). Currency prices, the nominal exchange rate, and security prices in a two-country dynamic monetary equilibrium. Mathematical Finance 9(1), 130. 10 1111 1467–9965 00061Google Scholar
Bellman, R. E. (1957). Dynamic Programming. Princeton: Princeton University Press.Google ScholarPubMed
Benveniste, L. M. and Scheinkman, J. A.. (1979). On the differentiability of the value function in dynamic models of economics. Econometrica 47(3), 727732. 10 2307 1910417Google Scholar
Bertsekas, D. P. (2000). Dynamic Programming and Optimal Control, vol. 1–2, 4 edn. Belmont, Massachusetts: Athena Scientific.Google Scholar
Bertsekas, D. P. and Shreve, S. E.. (1978). Stochastic Optimal Control: The Discrete-Time Case. New York: Academic Press, Inc.Google Scholar
Binner, J. M., Chaudhry, S., Kelly, L. and Swofford, J. L.. (2018). “Risky” monetary aggregates for the UK and US. Journal of International Money and Finance 89, 127138. 10.1016/j.jimonfin.2018.08.015 Google Scholar
Blackwell, D. (1965). Discounted dynamic programming. The Annals of Mathematical Statistics 36(1), 226235. https://www.jstor.org/stable/2238089 Google Scholar
Blackwell, D. (1970). On stationary policies (with discussion). Journal of the Royal Statistical Society. Series A (General) 133(1), 3337. 10 2307 2343810Google Scholar
Blackwell, D., Freedman, D. and Orkin, M.. (1974). The optimal reward operator in dynamic programming. The Annals of Probability 2(5), 926941. 10.1214/aop/1176996558 Google Scholar
Blume, L., Easley, D. and O’Hara, M.. (1982). Characterization of optimal plans for stochastic dynamic programs. Journal of Economic Theory 28(2), 221234. 10.1016/0022-0531(82)90059-X Google Scholar
Bohn, H. (1991). On cash-in-advance models of money demand and asset pricing. Journal of Money, Credit and Banking 23(2), 224–42. 10.2307/1992778 Google Scholar
Boyle, G. W. and Peterson, J. D.. (1995). Monetary policy, aggregate uncertainty, and the stock market. Journal of Money, Credit and Banking 27(2), 570. 10.2307/207788 Google Scholar
Calvo, G. A. and Vegh, C. A.. (1995). Fighting inflation with high interest rates: the small open economy case under flexible prices. Journal of Money, Credit and Banking 27(1), 4966. 10 2307 2077850Google Scholar
Canzoneri, M. B., Cumby, R. E. and Diba, B. T.. (2006). How do monetary and fiscal policy interact in the European Monetary Union?. In Canzoneri, M. B., Cumby, R. E. and Diba, B. T.. (eds.), NBER International Seminar on Macroeconomics, MIT Press: West. http://www.jstor.org/stable/40215051 Google Scholar
Chang, R. (1998). Credible monetary policy in an infinite horizon model: recursive approaches. Journal of Economic Theory 81(2), 431461. 10.1006/jeth.1998.2395 CrossRefGoogle Scholar
Chari, V. V., Christiano, L. J. and Eichenbaum, M.. (1998). Expectation traps and discretion. Journal of Economic Theory 81(2), 462492. 10.1006/jeth.1998.2421 CrossRefGoogle Scholar
Choi, W. G. and Oh, S.. (2003). A money demand function with output uncertainty, monetary uncertainty, and financial innovations. Journal of Money, Credit, and Banking 35(5), 685709. https://www.jstor.org/stable/3649823 Google Scholar
Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econometricians. New York: Oxford University Press.Google Scholar
Derpich, M. S. and Yüksel, S.. (2023). Dual effect, certainty equivalence, and separation revisited: a counterexample and a relaxed characterization for optimality. IEEE Transactions on Automatic Control 68(2), 12591266. 10.1109/TAC.2022.3151189 Google Scholar
Díaz-Giménez, J. (2001). Linear quadratic approximations: An introduction, In Computational Methods for the Study of Dynamic Economies, 1329, Oxford University Press. chapter 2, 10.1093/0199248273.003.0002 Google Scholar
Drake, L., Mullineux, A. and Agung, J.. (2003). Incorporating risky assets in Divisia monetary aggregates. Buletin Ekonomi Moneter dan Perbankan 3(1), 98120. 10.21098/bemp.v3i1.289 Google Scholar
Drake, L., Fleissig, A. R. and Mullineux, A.. (1999). Are “Risky assets” substitutes for “Monetary assets”? Economic Inquiry 37(3), 510526. 10.1111/j.1465-7295.1999.tb01445.x Google Scholar
Drouhin, N. (2020). Non-stationary additive utility and time consistency. Journal of Mathematical Economics 86, 114. 10.1016/j.jmateco.2019.10.005 Google Scholar
Duan, R., Binner, J. M., Swofford, J. J. and Mandal, A.. (2023). A New Green Measure of Money: Theory and Practice, University of Birmingham, Technical report.Google Scholar
Duchan, A. I. (1974). A clarification and a new proof of the certainty equivalence theorem. International Economic Review 15(1), 216224. 10 2307 2526101CrossRefGoogle Scholar
Dudley, R. M. (1989). Real Analysis and Probability. Pacific Grove, Calif: Wadsworth & Brooks/Cole, Advanced Books & Software.The Wadsworth & Books/Cole mathematics series.Google Scholar
Dupor, B. (2003). Optimal random monetary policy with nominal rigidity. Journal of Economic Theory 112(1), 6678. 10.1016/S0022-0531(03)00100-5 Google Scholar
Dutkowsky, D. H. and Dunsky, R. M.. (1996). Intertemporal substitution, money, and aggregate labor supply. Journal of Money, Credit and Banking 28(2), 216232. 10 2307 2078024Google Scholar
Dynkin, E. B. and Juskevic, A. A.. (1975). Controlled Markov processes and their pplications. Moscow: Springler-Verlag.Google Scholar
Elger, T. and Binner, J. M.. (2004). The UK household sector demand for risky money. Contributions in Macroeconomics 4(1), 120. 10 2202 1534–5998 1136Google Scholar
Feenstra, R. C. (1986). Functional equivalence between liquidity costs and the utility of money. Journal of Monetary Economics 17(2), 27291. 10.1016/0304-3932(86)90032-2 CrossRefGoogle Scholar
Fernández-Villaverde, J., Rubio-Ramírez, J. F. and Schorfheide, F.. (2016). Solution and estimation methods for DSGE models. In Fernández-Villaverde, J., Rubio-Ramírez, J. F. and Schorfheide, F.. (eds.), Handbook of Macroeconomics, 527724, Elsevier. chapter 9, 10.1016/bs.hesmac.2016.03.006 Google Scholar
Finn, M. G., Hoffman, D. L. and Schlagenhauf, D. E.. (1990). Intertemporal asset-pricing relationships in barter and monetary economies: an empirical analysis. Journal of Monetary Economics 25(3), 431451. 10.1016/0304-3932(90)90062-9 CrossRefGoogle Scholar
Gutiérrez, J. M. (2009). A characterization of compactness through preferences. Mathematical Social Sciences 57(1), 131133. 10.1016/j.mathsocsci.2008.08.002 Google Scholar
Haan, D. and Wouter, J.. (1990). The optimal inflation path in a Sidrauski-type model with uncertainty. Journal of Monetary Economics 25(3), 389409. 10.1016/0304-3932(90)90060-H Google Scholar
Hansen, L. P. and Singleton, K. J.. (1983). Stochastic consumption, risk aversion, and the temporal behavior of asset returns. Journal of Political Economy 91(2), 249265, https://www.jstor.org/stable/1832056 Google Scholar
Hinderer, K. (1970). Foundations of Nonstationary Dynamic Programming with Discrete Time Parameter. New York: Springer-Verlag.Google Scholar
Hodrick, R. J., Kocherlakota, N. R. and Lucas, D.. (1991). The variability of velocity in cash-in-advance models. Journal of Political Economy 99(2), 358384. 10.1086/261754 CrossRefGoogle Scholar
Holman, J. A. (1998). GMM estimation of a money-in-the-utility-function model: the implications of functional forms. Journal of Money, Credit and Banking 30(4), 679698. 10 2307 2601124Google Scholar
Imrohoroglu, S. (1994). GMM estimates of currency substitution between the Canadian dollar and the U.S. dollar. Journal of Money, Credit and Banking 26(4), 792807. 10 2307 2077947Google Scholar
Jappelli, T. and Pistaferri, L.. (2017). The certainty equivalence model, In The Economics of Consumption: Theory and Evidence, pp. 6581, Oxford University Press. chapter 4, 10.1093/acprof:oso/9780199383146.003.0004 Google Scholar
Karatzas, I. and Shreve, S. E.. (1998). Methods of Mathematical Finance. New York and Heidelberg: Springer.Google Scholar
Lang, S. (1993). Real and Functional Analysis. New York: Springer.Google Scholar
Ljungqvist, L. and Sargent, T. J.. (2004). Recursive Macroeconomic Theory. 2nd edn. Cambridge and London: MIT Press.Google Scholar
Lucas, R. E. , Jr. (1978). Asset prices in an exchange economy. Econometrica 46(6), 1429–45. 10 2307 1913837Google Scholar
Lucas, RE. Jr. (1990). Liquidity and interest rates. Journal of Economic Theory 50(2), 237264. 10.1016/0022-0531(90)90001-Z CrossRefGoogle Scholar
Luenberger, D. G. (1969). Optimization by Vector Space Methods. Wiley Professional, Wiley-Interscience.Google Scholar
Matsuyama, K. (1990) Sunspot equilibria (rational bubbles) in a model of money-in-the-utility-function. Journal of Monetary Economics 25(1), 137144. 10.1016/0304-3932(90)90049-A Google Scholar
Matsuyama, K. (1991). Endogenous price fluctuations in an optimizing model of a monetary economy. Econometrica 59(6), 16171631. 10 2307 2938282Google Scholar
Mattner, L. (2001). Complex differentiation under the integral. Nieuw Archief voor de Wiskunde 2(1), 3235. http://www.math.leidenuniv.nl/∼naw/serie5/deel02/mrt2001/pdf/mattner.pdf Google Scholar
Mehra, R. and Prescott, E. C.. (1985). The equity premium: a puzzle. Journal of Monetary Economics 15(2), 145161. 10.1016/0304-3932(85)90061-3 Google Scholar
Nesmith, T. D. (2007). Rational seasonality. In Nesmith, T. D. (eds.), Functional Structure Inference, vol. 18, 227255. Leeds: Emerald Group Publishing Limited, International Symposia in Economic Theory and Econometrics, 10.1016/S1571-0386(07)18011-X Google Scholar
Page, F. H. and Wooders, M. H.. (1996). A necessary and sufficient condition for the compactness of individually rational and feasible outcomes and the existence of an equilibrium. Economics Letters 52(2), 153162. 10.1016/S0165-1765(96)00855-5 Google Scholar
Parra-Alvarez, J. C., Polattimur, H. and Posch, O.. (2021). Risk matters: breaking certainty equivalence in linear approximations. Journal of Economic Dynamics and Control 133, 104248. 10.1016/j.jedc.2021.104248 CrossRefGoogle Scholar
Poterba, J. M. and Rotemberg, J. J.. (1987). Money in the utility function: An empirical implementation. In New approaches to monetary economics: Proc. Second Int. Symp. Econ. Theory Econometrics, 219240, International Symposia in Economic Theory and Econometrics. 10.1017/CBO9780511759628.007 Google Scholar
Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32(1/2), 122136.Google Scholar
Restrepo-Tobón, D. A. (2015). Evidence that risk adjustment is unnecessary in estimates of the user cost of money. Ecos De Economía 19(41), 5070. 10.17230/ecos.2015.41.3 Google Scholar
Sargent, T. J. (1987). Dynamic Macroeconomic Theory. Cambridge, Mass. and London: Harvard University Press.Google Scholar
Serletis, A. and Xu, L. (2024). The credit-augmented Divisia aggregates and the monetary business cycle. Macroeconomic Dynamics 29, 140. 10.1017/S1365100523000627 Google Scholar
Shiryaev, A. N. (1996). Probability. New York: Springer.Google Scholar
Simon, H. A. (1956). Dynamic programming under uncertainty with a quadratic criterion function. Econometrica 24(1), 7481.10 2307 1905261Google Scholar
Spear, S. and Young, W.. (2017). Generalizations of optimal growth theory: Stochastic models, mathematics, and metasynthesis. Macroeconomic Dynamics 21(2), 515544. 10.1017/S1365100515000590 Google Scholar
Speyer, J. L. and Gustafson, D. E.. (1974). Stochastic optimal control of linear dynamic systems. AIAA Journal 12(8), 10131020. 10 2514 3 49403Google Scholar
Stokey, N. L. and Lucas, R. E. Jr. (1989). Recursive Methods in Economic Dynamics. Cambridge, Mass. and London: Harvard University Press. https://doi.org/10.2307/j.ctvjnrt76 CrossRefGoogle Scholar
Strauch, R. E. (1966). Negative dynamic programming. The Annals of Mathematical Statistics 37(4), 871890. 10.1214/aoms/1177699369 Google Scholar
Takayama, A. (1985). Mathematical economics, 2 edn. Cambridge University Press, https://EconPapers.repec.org/RePEc:cup: cbooks: 9780521314985 Google Scholar
Tao, T. (2008). Compactness and compactification. In Tao, T. (ed.), The Princeton Companion to Mathematics, Princeton, NJ: Princeton University Press.Google Scholar
Theil, H. (1957). A note on certainty equivalence in dynamic planning. Econometrica 25(2), 346349. 10 2307 1910260CrossRefGoogle Scholar
Tobin, J. (1958). Liquidity preference as behavior towards risk. The Review of Economic Studies 25(2), 6586. 10.2307/2296205 Google Scholar
Townsend, R. M. (1987). Asset-return anomalies in a monetary economy. Journal of Economic Theory 41(2), 219247. 10.1016/0022-0531(87)90018-4 CrossRefGoogle Scholar
Van de Water, H., Willems, J.. (1981). The certainty equivalence property in stochastic control theory. IEEE Transactions on Automatic Control 26(5), 10801087. 10.1109/TAC.1981.1102781 Google Scholar
Yemba, B. P. (2022). User cost of foreign monetary assets under dollarization. Finance Research Letters 49, 103023. 10.1016/j.frl.2022.103023 Google Scholar