Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T05:24:54.708Z Has data issue: false hasContentIssue false

On the equations a2−2b6=cp and a2−2=cp

Published online by Cambridge University Press:  01 May 2012

Imin Chen*
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada (email: [email protected])

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the equation a2−2b6=cp and its specialization a2−2=cp, where p is a prime, using the modular method. In particular, we use a ℚ-curve defined over for which the solution (a,b,c)=(±1,±1,−1) gives rise to a CM-form. This allows us to apply the modular method to resolve the equation a2−2b6=cp for p in certain congruence classes. For the specialization a2−2=cp, we use the multi-Frey technique of Siksek to obtain further refined results.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2012

References

[1]Bennett, M. and Chen, I., ‘Multi-frey ℚ-curves and the Diophantine equation a 2+b 6=c p’, Algebra Number Theory, to appear.Google Scholar
[2]Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) 235265.CrossRefGoogle Scholar
[3]Bugeaud, Y., Luca, F., Mignotte, M. and Siksek, S., ‘Almost powers in the Lucas sequences’, J. Théor. Nombres Bordeaux 20 (2008) 555600.CrossRefGoogle Scholar
[4]Bugeaud, Y., Mignotte, M. and Siksek, S., ‘Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers’, Ann. of Math. (2) 163 (2006) 9691018.CrossRefGoogle Scholar
[5]Bugeaud, Y., Mignotte, M. and Siksek, S., ‘A multi-Frey approach to some multi-parameter families of Diophantine equations’, Canad. J. Math. 60 (2008) 491519.CrossRefGoogle Scholar
[6]Carayol, H., ‘Sur les représentations attachés aux forms modulaire de Hilbert’, C. R. Acad. Sci. Paris Série I 196 (1983) 629.Google Scholar
[7]Carayol, H., ‘Sur les représentations p-adiques associées aux forms modulaire de Hilbert’, Ann. Sci. Eć. Norm. Supér. 19 (1986) 409468.CrossRefGoogle Scholar
[8]Chen, I., ‘On the equation a 2+b 2p=c 5’, Acta Arith. 143 (2010) 345375.CrossRefGoogle Scholar
[9]Cohen, H., Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics 240 (Springer, New York, 2007).Google Scholar
[10]Darmon, H., Diamond, F. and Taylor, R., ‘Fermat’s last theorem’, Elliptic curves, modular forms & Fermat’s Last Theorem (Hong Kong, 1993) (International Press, Cambridge, MA, 1997) 2140.Google Scholar
[11]Dieulefait, L. and Urroz, J. J., ‘Solving Fermat-type equations x 4+dy 2=z p via modular ℚ-curves over polyquadratic fields’, J. reine angew. Math 633 (2009) 183195.Google Scholar
[12]Ellenberg, J., ‘Galois representations attached to ℚ-curves and the generalized Fermat equation A 4+B 2=C p’, Amer. J. Math. 126 (2004) 763787.CrossRefGoogle Scholar
[13]Gross, B. H., ‘A tameness criterion for Galois representations associated to modular forms (mod p)’, Duke Math. J. 61 (1990) 445517.CrossRefGoogle Scholar
[14]Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture (I)’, Invent. Math. 178 (2009) 485504.CrossRefGoogle Scholar
[15]Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture (II)’, Invent. Math. 178 (2009) 505586.CrossRefGoogle Scholar
[16]Kisin, M., ‘Modularity of 2-adic Barsotti–Tate representations’, Invent. Math. 178 (2009) 587634.CrossRefGoogle Scholar
[17]Kraus, A., ‘Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive’, Manuscripta Math. 69 (1990) 3385.CrossRefGoogle Scholar
[18]Mazur, B., ‘Modular curves and the Eisenstein ideal’, Publ. Mat. Inst. Hautes Études Sci. 47 (1977) 33186.CrossRefGoogle Scholar
[19]Milne, J., ‘On the arithmetic of abelian varieties’, Invent. Math. 17 (1972) 177190.CrossRefGoogle Scholar
[20]Miyake, T., Modular forms (Springer, Berlin, 1989).CrossRefGoogle Scholar
[21]Quer, J., ‘ℚ-curves and abelian varieties of GL2-type’, Proc. Lond. Math. Soc. 81 (2000) 285317.CrossRefGoogle Scholar
[22]Ribet, K., ‘Galois representations attached to eigenforms with nebentypus’, Modular functions of one variable V (Bonn, Germany, 1976), Lecture Notes in Mathematics 601 (Springer, Berlin, 1977) 1751.Google Scholar
[23]Ribet, K., ‘Report on mod representations of ’, Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics 55 (American Mathematical Society, Providence, RI, 1994) 639676.Google Scholar
[24]Serre, J.-P., ‘Propriétés galoisiennes des points d’ordre fini des courbes elliptiques’, Invent. Math. 15 (1972) 259331.CrossRefGoogle Scholar
[25]Serre, J.-P., ‘Sur les représentations modulaires de degré 2 de ’, Duke Math. J. 54 (1987) 179230.CrossRefGoogle Scholar
[26]Shimura, G., ‘On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields’, Nagoya Math. J. 43 (1971) 199208.CrossRefGoogle Scholar
[27]Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151 (Springer, New York, 1994).CrossRefGoogle Scholar