No CrossRef data available.
Article contents
Good families of Drinfeld modular curves
Part of:
Curves
Algebraic number theory: global fields
Arithmetic algebraic geometry
Computational aspects in algebraic geometry
Published online by Cambridge University Press: 01 December 2015
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.
- Type
- Research Article
- Information
- Copyright
- © The Author(s) 2015
References
Bassa, A., Beelen, P. and Nguyen, N., ‘Good towers of function fields’,
Algebraic curves and finite fields
, Radon Series on Computational and Applied Mathematics (Walter de Gruyter, Berlin/Boston, 2014) 23–40.Google Scholar
Elkies, N. D., ‘Explicit modular towers’,
Proceedings of the Thirty-Fifth [1997] Annual Allerton Conference on Communication, Control and Computing
(University of Illinois at Urbana-Champaign, 1998) 23–32.Google Scholar
Elkies, N. D., ‘Explicit towers of Drinfeld modular curves’,
European congress of mathematics
, Progress In Mathematics
202 (Birkhäuser, Basel, 2001) 189–198.Google Scholar
Garcia, A. and Stichtenoth, H., ‘On the asymptotic behaviour of some towers of function fields over finite fields’, J. Number Theory
61 (1996) no. 2, 248–273.CrossRefGoogle Scholar
Gekeler, E.-U., ‘Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpern’,
Bonner mathematische Schriften
(Mathematischen Institut der Universität Bonn, 1979).Google Scholar
Gekeler, E.-U.,
Drinfeld modular curves
, Lecture Notes in Mathematics
1231 (Springer, Heidelberg, 1986).CrossRefGoogle Scholar
Gekeler, E.-U., ‘Sur la géométrie de certaines algèbres de quaternions’, J. Théor. Nombres Bordeaux (2)
2 (1990) no. 1, 143–153.CrossRefGoogle Scholar
Gekeler, E.-U., ‘Asymptotically optimal towers of curves over finite fields’,
Algebra, arithmetic and geometry with applications
(Springer, Heidelberg, 2004) 325–336.Google Scholar
Goldschmidt, D. M., ‘Algebraic functions and projective curves’,
Graduate Texts in Mathematics
215 (Springer, New York, 2003).Google Scholar
Ihara, Y., ‘Some remarks on the number of rational points of algebraic curves over finite fields’, J. Fac. Sci. Univ. Tokyo 1A
28 (1982) 721–724.Google Scholar
Schweizer, A., ‘Hyperelliptic Drinfeld modular curves’,
Drinfeld modules, modular schemes and applications
(World Scientific, Singapore, 1997) 330–343.Google Scholar
Serre, J.-P., ‘Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini’, C. R. Acad. Sci. Paris
296 (1983) 397–402.Google Scholar
Taelman, L., ‘Drinfeld modular curves have many points’, Preprint, 2006, arXiv:math/0602157 [math.AG].Google Scholar
Tsfasman, M. A., Vlâdut, S. G. and Zink, Th., ‘Modular curves, Shimura curves, and Goppa codes, better than Varshamov–Gilbert bound’, Math. Nachr.
109 (1982) no. 1, 21–28.Google Scholar
Vlâdut, S. G. and Drinfel’d, V. G., ‘Number of points of an algebraic curve’, Funct. Anal. Appl.
17 (1983) no. 1, 53–54.Google Scholar
You have
Access