Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:56:34.507Z Has data issue: false hasContentIssue false

Euclidean Windows

Published online by Cambridge University Press:  01 February 2010

Stefania Cavallar
Affiliation:
CWI, Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, [email protected]
Franz Lemmermeyer
Affiliation:
Univ. San Marcos, Department of Mathematics, 333 South Twin Oaks Valley Road, San Marcos, CA 92096-0001, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study number fields which are Euclidean with respect to functions that are different from the absolute value of the norm, namely weighted norms that depend on a real parameter c. We introduce the Euclidean minimum of weighted norms as the set of values of c for which the function is Euclidean, and we show that the Euclidean minimum may be irrational and not isolated. We also present computational results on Euclidean minima of cubic number fields, and present a list of norm-Euclidean complex cubic fields that we conjecture to be complete.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2000

References

1. Barnes, E. S. and Swinnerton-Dyer, H. P. F., ‘The inhomogeneous minima of binary quadratic forms I’, Acta Math. 87 (1952), 259323; II, ibid., 88 (1952) 279316.CrossRefGoogle Scholar
2. Bedocchi, E., ‘L'anneau ℤ[√14] et l'algorithme Euclidien’, ManuscriptaMath. 53 (1985) 199216.Google Scholar
3. Cardon, D., ‘A Euclidean ring containing ℤ[√14]’, C. R. Math. Rep. Acad. Sci. Canada 19 (1997) 2832.Google Scholar
4. Cassels, J. W. S., ‘The inhomogeneous minima of binary quadratic, ternary cubic, and quaternary quartic forms’, Proc. Cambridge Phil. Soc. 48 (1952) 7286; Addendum, ibid., 519520.CrossRefGoogle Scholar
5. Cavallar, S., ‘Alcuni esempi di campi di numeri cubici non euclidei rispetto alianorma ma euclidei rispetto ad una norma pesata’, Tesi di Laurea, Universita di Trento, 1995.Google Scholar
6. Cavallar, S. and Lemmermeyer, F., ‘The Euclidean algorithm in cubic number fields’, Proceedings, Number Theory, Eger 1996 (ed. Gyory, K., Pethö, A. and Sos, V. T., Gruyter, 1998) 123146.Google Scholar
7. Clark, D. A., ‘A quadratic field which is Euclidean but not norm-Euclidean’, Manuscripta Math. 83 (1994) 327330.CrossRefGoogle Scholar
8. Clark, D. A., ‘Non-Galois cubic fields which are Euclidean but not norm-Euclidean’, Math. Comp. 65 (1996) 16751679.CrossRefGoogle Scholar
9. Clark, D. A. and Murty, R., ‘The Euclidean algorithm for Galois extensions of ℚ’, J. ReineAngew. Math. 459 (1995) 151162.Google Scholar
10. Coja-Oghlan, A., ‘Berechnung kubischer euklidischer Zahlkörper’, Diplomarbeit, FU Berlin, 1999.Google Scholar
11. Hainke, B., ‘Euklidische Algorithmen in den Ganzheitsringen von ℚ(√14) und ℚ(√69)’ Diplomarbeit, Universitat Mainz, 1998.Google Scholar
12. Harper, M., ‘A proof that ℤ[√14] is a Euclidean domain’, Ph.D. thesis, McGill University, 2000; http://euclid.math.mcgill.ca/harper/.Google Scholar
13. Lemmermeyer, F., ‘The Euclidean algorithm in algebraic number fields’, Expo. Math. 13 (1995) 385416.Google Scholar
14. Lenstra, H. W., Euclidean rings, Lecture Notes, Bielefeld (University of Bielefeld, 1974).Google Scholar
15. Nagata, M., ‘A pairwise algorithm and its application to ℤ[√14]’, Proc. Algebraic Geometry Seminar, Singapore 1987 (World Scientific Publishing, Singapore, 1988) 6974.Google Scholar
16. Nagata, M., ‘Some questions on ℤ[√4]’, Algebraic geometry and its applications, Proc. Conf., Purdue University, USA, June 1–4, 1990 (ed. Bajaj, Ch., Springer, 1994) 327332.Google Scholar
17. Niklasch, G., ‘On Clark's example of a Euclidean field which is not norm-euclidean’, Manuscripta Math. 83 (1994) 443446.CrossRefGoogle Scholar