Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:10:42.162Z Has data issue: false hasContentIssue false

Computation on elliptic curves with complex multiplication

Published online by Cambridge University Press:  01 October 2014

Pete L. Clark
Affiliation:
University of Georgia, Athens 30602, USA email [email protected]
Patrick Corn
Affiliation:
Virtu Financial, Austin 78746, USA email [email protected]
Alex Rice
Affiliation:
Bucknell University, Lewisburg 17837, USA email [email protected]
James Stankewicz
Affiliation:
University of Copenhagen, DK-2100 Copenhagen, Denmark email [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give the complete list of possible torsion subgroups of elliptic curves with complex multiplication over number fields of degree 1–13. Additionally we describe the algorithm used to compute these torsion subgroups and its implementation.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models , Ergeb. Math. Grenzgeb. (3) 21 (Springer, Berlin, 1990).CrossRefGoogle Scholar
Bosma, W., Cannon, J. and Playoust, C., ‘The magma algebra system I: The user language’, J. Symbolic Comput. 24 (1997) 34.Google Scholar
Clark, P. L., Cook, B. and Stankewicz, J., ‘Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice)’, Int. J. Number Theory 9 (2013) no. 2, 447479.Google Scholar
Cox, D., Primes of the form x 2 + n y 2: Fermat, class field theory and complex multiplication (John Wiley & Sons, New York, 1989).Google Scholar
Fung, G., Ströher, H., Williams, H. and Zimmer, H., ‘Torsion groups of elliptic curves with integral j-invariant over pure cubic fields’, J. Number Theory 36 (1990) 1245.Google Scholar
Grenet, B., Koiran, P. and Portier, N., ‘The multivariate resultant is NP-hard in any characteristic’, Mathematical foundations of computer science , Lecture Notes in Computer Science 6281 (Springer, Berlin, 2010) 477488.Google Scholar
Heilbronn, H., ‘On the class number in imaginary quadratic fields’, Q. J. Math. 25 (1934) 150160.Google Scholar
Kamienny, S., ‘Torsion points on elliptic curves over all quadratic fields’, Duke Math. J. 53 (1986) no. 1, 157162.CrossRefGoogle Scholar
Kamienny, S., ‘Torsion points on elliptic curves and q-coefficients of modular forms’, Invent. Math. 109 (1992) no. 2, 221229.Google Scholar
Kenku, M. A. and Momose, F., ‘Torsion points on elliptic curves defined over quadratic fields’, Nagoya Math. J. 109 (1988) 125149.CrossRefGoogle Scholar
Kubert, D. S., ‘Universal bounds on the torsion of elliptic curves’, Proc. Lond. Math. Soc. 33 (1976) no. 3, 193237.Google Scholar
Lang, S., Number theory III diophantine geometry , Encyclopaedia of Mathematical Sciences 60 (Springer, Berlin, 1991).Google Scholar
Mazur, B., ‘Modular elliptic curves and the Eisenstein ideal’, Publ. Math. Inst. Hautes Études Sci. 47 (1977) 33168.CrossRefGoogle Scholar
Merel, L., ‘Bornes pour la torsion des courbes elliptiques sur les corps de nombres’, Invent. Math. 124 (1996) 437449.Google Scholar
Milne, J., Class field theory, Version 4, http://jmilne.org/math/.Google Scholar
Müller, H., Ströher, H. and Zimmer, H., ‘Torsion groups of elliptic curves with integral j-invariant over quadratic fields’, J. Reine Angew. Math. 397 (1989) 100161.Google Scholar
Olson, L., ‘Points of finite order on elliptic curves with complex multiplication’, Manuscripta Math. 14 (1974) 195205.CrossRefGoogle Scholar
Parish, J. L., ‘Rational torsion in complex-multiplication elliptic curves’, J. Number Theory 33 (1989) 257265.CrossRefGoogle Scholar
Petho, A., Weis, T. and Zimmer, H., ‘Torsion groups of elliptic curves with integral j-invariant over general cubic number fields’, Int. J. Algebra Comput. 7 (1997) 353413.CrossRefGoogle Scholar
Prasad, D. and Yogananda, C. S., ‘Bounding the torsion in CM elliptic curves’, C. R. Math. Acad. Sci. Soc. R. Can. 23 (2001) 15.Google Scholar
Schoof, R., ‘Counting points on elliptic curves over finite fields’, J. Théor. Nombres Bordeaux 7 (1995) no. 1, 219254.CrossRefGoogle Scholar
Silverberg, A., ‘Torsion points on abelian varieties of CM-type’, Compositio Math. 68 (1988) no. 3, 241249.Google Scholar
Silverman, J., The arithmetic of elliptic curves , Graduate Texts in Mathematics 106 (Springer, Berlin, 1986).CrossRefGoogle Scholar
Silverman, J., Advanced topics in the arithmetic of elliptic curves , Graduate Texts in Mathematics 151 (Springer, Berlin, 1994).Google Scholar
Sutherland, A., ‘Constructing elliptic curves over finite fields with prescribed torsion’, Math. Comp. 81 (2012) 11311147.Google Scholar
Watkins, M., ‘Class numbers of imaginary quadratic fields’, Math. Comp. 73 (2004) no. 246, 907938.Google Scholar