Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T06:24:50.610Z Has data issue: false hasContentIssue false

A reappraisal of Masonhalea (Parmeliaceae, Lecanorales) based on molecular and morphological data

Published online by Cambridge University Press:  31 October 2013

Matthew P. NELSEN
Affiliation:
Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois 60637, USA. Email: [email protected] Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
Arne THELL
Affiliation:
The Biological Museums, Lund University, Box 117, SE-221 00 Lund, Sweden
Steven D. LEAVITT
Affiliation:
M. L. Bean Life Science Museum, Brigham Young University, Provo, Utah 84602, USA Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
Celia J. HAMPTON-MILLER
Affiliation:
University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775, USA; and Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan 48109, USA
H. Thorsten LUMBSCH
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA

Abstract

Previous studies have identified a close relationship between the monospecific Masonhalea richardsonii and Tuckermannopsis inermis. However, formal taxonomic changes were postponed until existing sequence data could be confirmed. Here we validate these data and discuss the transfer of T. inermis to Masonhalea (made by Lumbsch et al. in Thell & Moberg 2011), consider the morphological, anatomical and biogeographic similarities and differences between these two taxa. The two Masonhalea species both produce lateral apothecia, marginal pycnidia, a layer of cortical tissue beneath the pycnidial wall and bacillariform conidia.

Type
Articles
Copyright
Copyright © British Lichen Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Kärnefelt, I. (1977) Masonhalea, a new lichen genus in the Parmeliaceae . Botaniska Notiser 130: 101107.Google Scholar
Kärnefelt, I. (1979) The brown fruticose species of Cetraria . Opera Botanica 46: 1150.Google Scholar
Kärnefelt, I. & Thell, A. (1993) Chemical evolution in cetrarioid lichens. Bibliotheca Lichenologica 53: 115127.Google Scholar
Kärnefelt, I. & Thell, A. (2000) On the systematic position of the genus Cetrariella (Parmeliaceae: Ascomycotina) indicated by ITS rDNA data. Bibliotheca Lichenologica 75: 2732.Google Scholar
Kärnefelt, I. & Thell, A. (2001) Delimitation of the genus Tuckermannopsis Gyeln. (Ascomycotina: Parmeliaceae) based on morphology and DNA sequences. Bibliotheca Lichenologica 78: 193209.Google Scholar
Kärnefelt, I., Mattsson, J.-E. & Thell, A. (1992) Evolution and phylogeny of cetrarioid lichens. Plant Systematics and Evolution 183: 113160.CrossRefGoogle Scholar
Kärnefelt, I., Mattsson, J.-E. & Thell, A. (1993) The lichen genera Arctocetraria, Cetraria and Cetrariella (Parmeliaceae) and their presumed evolutionary affinities. Bryologist 96: 394404.CrossRefGoogle Scholar
Krog, H. (1973) Cetraria inermis (Nyl.) Krog, a new lichen species in the amphi-Beringian flora element. Bryologist 76: 299300.CrossRefGoogle Scholar
Leavitt, S. D., Johnson, L. A., St. Clair, L. L. (2011) Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. American Journal of Botany 98: 114.CrossRefGoogle ScholarPubMed
Mattsson, J.-E. (1993) A monograph of the genus Vulpicida . Opera Botanica 119: 161.Google Scholar
Mattsson, J. -E. & Articus, K. (2004) The monophyletic groups of cetrarioid lichens. Symbolae Botanicae Upsalienses 34: 237244.Google Scholar
Mattsson, J.-E. & Lai, M. J. (1993) Vulpicida, a new genus in Parmeliaceae (lichenized Ascomycetes). Mycotaxon 46: 425428.Google Scholar
McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L., Marhold, K., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., et al. (eds) (2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. [Regnum Vegetabile no. 146.] Ruggell: A. R. Ganter Verlag.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (BC), 14 November 2010, New Orleans, Louisiana, pp 18.CrossRefGoogle Scholar
Nelsen, M. P., Lücking, R., Umaña, L., Trest, M. T., Will-Wolf, S., Chaves, J. L. & Gargas, A. (2007) Multiclavula ichthyiformis (Fungi: Basidiomycota: Cantharellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. American Journal of Botany 94: 12891296.CrossRefGoogle ScholarPubMed
Nelsen, M. P., Chavez, N., Sackett-Hermann, E., Thell, A., Randlane, T., Divakar, P. K., Rico, V. J. & Lumbsch, H. T. (2011 a) The cetrarioid core group revisited (Lecanorales: Parmeliaceae). Lichenologist 43: 537551.CrossRefGoogle Scholar
Nelsen, M. P., Lücking, R., Mbatchou, J. S., Andrew, C. J., Spielmann, A. A. & Lumbsch, H. T. (2011 b) New insights into relationships of lichen-forming Dothideomycetes. Fungal Diversity 51: 155162.CrossRefGoogle Scholar
Pérez-Ortega, S., Fernández-Mendoza, F., Raggio, J., Vivas, M., Ascaso, C., Sancho, L. G., Printzen, C. & de los Ríos, A. (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification. Annals of Botany 109: 11331148.CrossRefGoogle ScholarPubMed
Randlane, T. & Saag, A. (1998) Synopsis of the genus Nephromopsis (fam. Parmeliaceae, lichenized Ascomycota). Cryptogamie, Bryologie-Lichénologie 19: 175191.Google Scholar
Randlane, T., Thell, A. & Saag, A. (1995) New data about the genera Cetrariopsis, Cetreliopsis and Nephromopsis (fam. Parmeliaceae, lichenized Ascomycotina). Cryptogamie, Bryologie-Lichénologie 16: 3560.Google Scholar
Rico, V. J., van den Boom, P. P. G. & Barrasa, J. M. (2005) Morphology, chemistry and distribution of Melanelia sorediella (Parmeliaceae) and similar species in the Iberian Peninsula. Lichenologist 37: 199215.CrossRefGoogle Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.CrossRefGoogle ScholarPubMed
Thell, A. (1995 a) A new position of the Cetraria commixta group in Melanelia (Ascomycotina, Parmeliaceae). Nova Hedwigia 60: 407422.Google Scholar
Thell, A. (1995 b) Pycnoconidial types in cetrarioid lichens. Cryptogamie, Bryologie-Lichénologie 16: 247256.Google Scholar
Thell, A. (1998) Phylogenetic relationships of some cetrarioid species in British Columbia with notes on Tuckermannopsis . Folia Cryptogamic Estonica 32: 113122.Google Scholar
Thell, A. & Goward, T. (1996) The new cetrarioid genus Kaernefeltia and related groups in the Parmeliaceae (lichenized Ascomycotina). Bryologist 99: 125136.CrossRefGoogle Scholar
Thell, A. & Moberg, R. (2011) Nordic Lichen Flora Volume 4 – Parmeliaceae. Uppsala: The Nordic Lichen Society, Uppsala University.Google Scholar
Thell, A., Randlane, T., Kärnefelt, I., Gao, X.-Q. & Saag, A. (1995 a) The lichen genus Allocetraria (Ascomycotina, Parmeliaceae). In Flechten Follmann. Contributions to Lichenology in Honour of Gerhard Follmann (Daniels, J. A., Schulz, M. & Peine, J., eds): 353370. Cologne: Botanical Institute, University of Cologne.Google Scholar
Thell, A., Mattsson, J.-E. & Kärnefelt, I. (1995 b) Lecanoralean ascus types in the lichenized families Alectoriaceae and Parmeliaceae . Cryptogamic Botany 5: 120127.Google Scholar
Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L. & Stenroos, S. (2002 a) Phylogeny and ecology of Cetraria obtusata, Coelopogon epiphorellus, and related taxa (Parmeliaceae, lichenized ascomycetes). Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 30–32: 283296.Google Scholar
Thell, A., Stenroos, S., Feuerer, T., Kärnefelt, I., Myllys, L. & Hyvönen, J. (2002 b) Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and β-tubulin sequences, morphology, anatomy and secondary chemistry. Mycological Progress 1: 335354.CrossRefGoogle Scholar
Thell, A., Högnabba, F., Elix, J. A., Feuerer, T., Kärnefelt, I., Myllys, L., Randlane, T., Saag, A., Stenroos, S., Ahti, T., et al. (2009) Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers. Lichenologist 41: 489511.CrossRefGoogle Scholar
Thomson, J. W. (1984) American Arctic Lichens 1. The Macrolichens. New York: Columbia University Press.Google Scholar
Tønsberg, T. & Elvebakk, A. (1993) Cetraria inermis new to Europe. Graphis Scripta 5: 7374.Google Scholar